Winter School

Day 2: Word-based models and the EM algorithm

MT Marathon

27 Jan 2009

Lexical translation

- How to translate a word \rightarrow look up in dictionary

Haus - house, building, home, household, shell.

- Multiple translations
- some more frequent than others
- for instance: house, and building most common
- special cases: Haus of a snail is its shell
- Note: During all the lectures, we will translate from a foreign language into English

Collect statistics

- Look at a parallel corpus (German text along with English translation)

Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

Estimate translation probabilities

- Maximum likelihood estimation

$$
p_{f}(e)= \begin{cases}0.8 & \text { if } e=\text { house } \\ 0.16 & \text { if } e=\text { building } \\ 0.02 & \text { if } e=\text { home } \\ 0.015 & \text { if } e=\text { household } \\ 0.005 & \text { if } e=\text { shell. }\end{cases}
$$

Alignment

- In a parallel text (or when we translate), we align words in one language with the words in the other

1	2	3	4
das	Haus	ist	klein
the	house	is	smal
1	2	3	4

- Word positions are numbered 1-4

Alignment function

- Formalizing alignment with an alignment function
- Mapping an English target word at position i to a German source word at position j with a function $a: i \rightarrow j$
- Example

$$
a:\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4\}
$$

Reordering

- Words may be reordered during translation

One-to-many translation

- A source word may translate into multiple target words

Dropping words

- Words may be dropped when translated
- The German article das is dropped

Inserting words

- Words may be added during translation
- The English just does not have an equivalent in German
- We still need to map it to something: special NULL token
a: $\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 0,5 \rightarrow 4\}$

IBM Model 1

- Generative model: break up translation process into smaller steps
- IBM Model 1 only uses lexical translation
- Translation probability
- for a foreign sentence $\mathbf{f}=\left(f_{1}, \ldots, f_{l_{f}}\right)$ of length l_{f}
- to an English sentence $\mathbf{e}=\left(e_{1}, \ldots, e_{l_{e}}\right)$ of length l_{e}
- with an alignment of each English word e_{j} to a foreign word f_{i} according to the alignment function $a: j \rightarrow i$

$$
p(\mathbf{e}, a \mid \mathbf{f})=\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)
$$

- parameter ϵ is a normalization constant

Example

das		Haus		ist		klein	
e	$t(e \mid f)$						
the	0.7	house	0.8	is	0.8	small	0.4
that	0.15	building	0.16	's	0.16	little	0.4
which	0.075	home	0.02	exists	0.02	short	0.1
who	0.05	household	0.015	has	0.015	minor	0.06
this	0.025	shell	0.005	are	0.005	petty	0.04

$$
\begin{aligned}
p(e, a \mid f) & =\frac{\epsilon}{4^{3}} \times t(\text { the } \mid \text { das }) \times t(\text { house } \mid \text { Haus }) \times t(\text { is } \mid \text { ist }) \times t(\text { small } \mid \text { klein }) \\
& =\frac{\epsilon}{4^{3}} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\
& =0.0028 \epsilon
\end{aligned}
$$

Learning lexical translation models

- We would like to estimate the lexical translation probabilities $t(e \mid f)$ from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
- if we had the alignments,
\rightarrow we could estimate the parameters of our generative model
- if we had the parameters,
\rightarrow we could estimate the alignments

EM algorithm

- Incomplete data
- if we had complete data, would could estimate model
- if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
- initialize model parameters (e.g. uniform)
- assign probabilities to the missing data
- estimate model parameters from completed data
- iterate

EM algorithm

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

EM algorithm

- After one iteration
- Alignments, e.g., between la and the are more likely

EM algorithm

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

EM algorithm

... the house ... the blue house ... the flower ...

- Convergence
- Inherent hidden structure revealed by EM

EM algorithm

- Parameter estimation from the aligned corpus

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
- parts of the model are hidden (here: alignments)
- using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
- take assign values as fact
- collect counts (weighted by probabilities)
- estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM

- We need to be able to compute:
- Expectation-Step: probability of alignments
- Maximization-Step: estimate translation probabilities from weighted counts

IBM Model 1 and EM

- Probabilities

$$
\begin{array}{cc}
p(\text { the } \mid \text { a })=0.7 & p(\text { house } \mid \text { la })=0.05 \\
p(\text { the } \mid \text { maison })=0.1 & p(\text { house } \mid \text { maison })=0.8
\end{array}
$$

- Alignments

$$
\begin{aligned}
& l a \bullet \bullet \text { the } \quad l a \bullet \bullet \text { the } \quad l a \bullet \text { the } \quad l a \bullet \bullet \text { the } \\
& \text { maison••house maison• } \bullet \text { house maison } \bullet \text { house maison } \bullet \text { house } \\
& p(\mathbf{e}, a \mid \mathbf{f})=0.56 \quad p(\mathbf{e}, a \mid \mathbf{f})=0.035 \quad p(\mathbf{e}, a \mid \mathbf{f})=0.08 \quad p(\mathbf{e}, a \mid \mathbf{f})=0.005 \\
& p(a \mid \mathbf{e}, \mathbf{f})=0.824 \quad p(a \mid \mathbf{e}, \mathbf{f})=0.052 \quad p(a \mid \mathbf{e}, \mathbf{f})=0.118 \quad p(a \mid \mathbf{e}, \mathbf{f})=0.007 \\
& \text { - Counts } \quad c(\text { the } \mid \text { la })=0.824+0.052 \quad c(\text { house } \mid \text { la })=0.052+0.007 \\
& c(\text { the } \mid \text { maison })=0.118+0.007 \quad c(\text { house } \mid \text { maison })=0.824+0.118
\end{aligned}
$$

IBM Model 1 and EM: Expectation Step

- We need to compute $p(a \mid \mathbf{e}, \mathbf{f})$
- Applying the chain rule:

$$
p(a \mid \mathbf{e}, \mathbf{f})=\frac{p(\mathbf{e}, a \mid \mathbf{f})}{p(\mathbf{e} \mid \mathbf{f})}
$$

- We already have the formula for $p(\mathbf{e}, \mathbf{a} \mid \mathbf{f})$ (definition of Model 1)

IBM Model 1 and EM: Expectation Step

- We need to compute $p(\mathbf{e} \mid \mathbf{f})$

$$
\begin{aligned}
p(\mathbf{e} \mid \mathbf{f}) & =\sum_{a} p(\mathbf{e}, a \mid \mathbf{f}) \\
& =\sum_{a(1)=0}^{l_{f}} \ldots \sum_{a\left(l_{e}\right)=0}^{l_{f}} p(\mathbf{e}, a \mid \mathbf{f}) \\
& =\sum_{a(1)=0}^{l_{f}} \cdots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)
\end{aligned}
$$

IBM Model 1 and EM: Expectation Step

$$
\begin{aligned}
p(\mathbf{e} \mid \mathbf{f}) & =\sum_{a(1)=0}^{l_{f}} \ldots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right) \\
& =\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \sum_{a(1)=0}^{l_{f}} \cdots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right) \\
& =\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} \sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)
\end{aligned}
$$

- Note the trick in the last line
- removes the need for an exponential number of products
\rightarrow this makes IBM Model 1 estimation tractable

The trick

$$
\left(\text { case } l_{e}=l_{f}=2\right)
$$

$$
\begin{aligned}
\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2}= & \frac{\epsilon}{3^{2}} \prod_{j=1}^{2} t\left(e_{j} \mid f_{a(j)}\right)= \\
= & t\left(e_{1} \mid f_{0}\right) t\left(e_{2} \mid f_{0}\right)+t\left(e_{1} \mid f_{0}\right) t\left(e_{2} \mid f_{1}\right)+t\left(e_{1} \mid f_{0}\right) t\left(e_{2} \mid f_{2}\right)+ \\
& +t\left(e_{1} \mid f_{1}\right) t\left(e_{2} \mid f_{0}\right)+t\left(e_{1} \mid f_{1}\right) t\left(e_{2} \mid f_{1}\right)+t\left(e_{1} \mid f_{1}\right) t\left(e_{2} \mid f_{2}\right)+ \\
& +t\left(e_{1} \mid f_{2}\right) t\left(e_{2} \mid f_{0}\right)+t\left(e_{1} \mid f_{2}\right) t\left(e_{2} \mid f_{1}\right)+t\left(e_{1} \mid f_{2}\right) t\left(e_{2} \mid f_{2}\right) \\
= & t\left(e_{1} \mid f_{0}\right)\left[t\left(e_{2} \mid f_{0}\right)+t\left(e_{2} \mid f_{1}\right)+t\left(e_{2} \mid f_{2}\right)\right]+ \\
& +t\left(e_{1} \mid f_{1}\right)\left[t\left(e_{2} \mid f_{1}\right)+t\left(e_{2} \mid f_{1}\right)+t\left(e_{2} \mid f_{2}\right)\right]+ \\
& +t\left(e_{1} \mid f_{2}\right)\left[t\left(e_{2} \mid f_{2}\right)+t\left(e_{2} \mid f_{1}\right)+t\left(e_{2} \mid f_{2}\right)\right] \\
= & {\left[t\left(e_{1} \mid f_{0}\right)+t\left(e_{1} \mid f_{1}\right)+t\left(e_{1} \mid f_{2}\right)\right]\left[t\left(e_{2} \mid f_{2}\right)+t\left(e_{2} \mid f_{1}\right)+t\left(e_{2} \mid f_{2}\right)\right] }
\end{aligned}
$$

IBM Model 1 and EM: Expectation Step

- Combine what we have:

$$
\begin{aligned}
p(a \mid \mathbf{e}, \mathbf{f}) & =p(\mathbf{e}, a \mid \mathbf{f}) / p(\mathbf{e} \mid \mathbf{f}) \\
& =\frac{\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)}{\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} \sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)} \\
& =\prod_{j=1}^{l_{e}} \frac{t\left(e_{j} \mid f_{a(j)}\right)}{\sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)}
\end{aligned}
$$

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair e,f that word e is a translation of word f :

$$
c(e \mid f ; \mathbf{e}, \mathbf{f})=\sum_{a} p(a \mid \mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_{e}} \delta\left(e, e_{j}\right) \delta\left(f, f_{a(j)}\right)
$$

- Using the expression on the previous slide, and noting that only alignments which link e and f are relevant, we obtain:

$$
c(e \mid f ; \mathbf{e}, \mathbf{f})=\frac{t(e \mid f)}{\sum_{i=0}^{l_{f}} t\left(e \mid f_{i}\right)} \sum_{j=1}^{l_{e}} \delta\left(e, e_{j}\right) \sum_{i=0}^{l_{f}} \delta\left(f, f_{i}\right)
$$

IBM Model 1 and EM: Maximization Step

- After collecting these counts over a corpus, we can estimate the model:

$$
t(e \mid f ; \mathbf{e}, \mathbf{f})=\frac{\left.\sum_{(\mathbf{e}, \mathbf{f})} c(e \mid f ; \mathbf{e}, \mathbf{f})\right)}{\left.\sum_{f} \sum_{(\mathbf{e}, \mathbf{f})} c(e \mid f ; \mathbf{e}, \mathbf{f})\right)}
$$

IBM Model 1 and EM: Pseudocode

```
initialize t(e|f) uniformly
do until convergence
    set count(e|f) to 0 for all e,f
    set total(f) to O for all f
    for all sentence pairs (e_s,f_s)
        for all words e in e_s
            total_s(e) = 0
            for all words f in f_s
                total_s(e) += t(e|f)
        for all words e in e_s
            for all words f in f_s
            count(e|f) += t(e|f) / total_s(e)
            total(f) += t(e|f) / total_s(e)
    for all f
        for all e
            t(e|f) = count(e|f) / total(f)
```


Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
- training of a higher IBM model builds on previous model
- Compuationally biggest change in Model 3
- trick to simplify estimation does not work anymore
\rightarrow exhaustive count collection becomes computationally too expensive
- sampling over high probability alignments is used instead

IBM Model 4

Word alignment

- IBM Models are nowadays mainly used for word alignment
- Other word alignment models proposed e.g. HMM
- Shared task at NAACL 2003 and ACL 2005 workshops

Word alignment with IBM models

- IBM Models create a many-to-one mapping
- words are aligned using an alignment function
- a function may return the same value for different input (one-to-many mapping)
- a function can not return multiple values for one input (no many-to-one mapping)
- But we need many-to-many mappings

Symmetrizing word alignments

- Intersection of GIZA++ bidirectional alignments

Symmetrizing word alignments

- Grow additional alignment points [Och and Ney, CompLing2003]

Growing heuristic

```
GROW-DIAG-FINAL-AND(e2f,f2e):
    neighboring = ((-1,0), (0, -1), (1,0),(0, 1), (-1,-1), (-1, 1),(1, -1), (1, 1))
    alignment = intersect(e2f,f2e);
    GROW-DIAG(); FINAL-AND(e2f); FINAL-AND(f2e);
GROW-DIAG():
    iterate until no new points added
        for english word e = 0 ... en
            for foreign word f = 0 ... fn
            if ( e aligned with f )
                for each neighboring point ( e-new, f-new ):
                        if ( ( e-new not aligned or f-new not aligned ) and
                        ( e-new, f-new ) in union( e2f, f2e ) )
                        add alignment point ( e-new, f-new )
FINAL-AND(a):
    for english word e-new = 0 ... en
        for foreign word f-new = 0 ... fn
            if ( ( e-new not aligned and f-new not aligned ) and
                    ( e-new, f-new ) in alignment a )
            add alignment point ( e-new, f-new )
```


More Recent Work

- Symmetrization during training
- symmetrize after each iteration of IBM Models
- integrate symmetrization into models
- e.g. Liang, Taskar and Klein, NAACL 2006
- Discriminative training methods
- supervised learning based on labeled data
- semi-supervised learning with limited labeled data
- e.g. Blunsom and Cohn, ACL 2006
- Better generative models
- e.g. Fraser and Marcu, EMNLP 2007

