Winter School

Day 5: Discriminative Training and Factored Translation Models

MT Marathon

30 January 2009

The birth of SMT: generative models

• The definition of translation probability follows a mathematical derivation

$$\mathrm{argmax}_{\mathbf{e}} p(\mathbf{e} | \mathbf{f}) = \mathrm{argmax}_{\mathbf{e}} p(\mathbf{f} | \mathbf{e}) \ p(\mathbf{e})$$

• Occasionally, some **independence** assumptions are thrown in for instance IBM Model 1: word translations are independent of each other

$$p(\mathbf{e}|\mathbf{f}, a) = \frac{1}{Z} \prod_{i} p(e_i|f_{a(i)})$$

- Generative story leads to **straight-forward estimation**
 - maximum likelihood estimation of component probability distribution
 - **EM algorithm** for discovering hidden variables (alignment)

Log-linear models

• IBM Models provided mathematical justification for factoring **components** together

 $p_{LM} \times p_{TM} \times p_D$

• These may be **weighted**

 $p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_D^{\lambda_D}$

• Many components p_i with weights λ_i

$$\prod_{i} p_{i}^{\lambda_{i}} = exp(\sum_{i} \lambda_{i} log(p_{i}))$$
$$log \prod_{i} p_{i}^{\lambda_{i}} = \sum_{i} \lambda_{i} log(p_{i})$$

Knowledge sources

- Many different knowledge sources useful
 - language model
 - reordering (distortion) model
 - phrase translation model
 - word translation model
 - word count
 - phrase count
 - drop word feature
 - phrase pair frequency
 - additional language models
 - additional features

Set feature weights

- Contribution of components p_i determined by weight λ_i
- Methods
 - manual setting of weights: try a few, take best
 - *automate* this process
- Learn weights
 - set aside a development corpus
 - set the weights, so that optimal translation performance on this development corpus is achieved
 - requires *automatic scoring* method (e.g., BLEU)

Discriminative training

- Training set (*development set*)
 - different from original training set
 - small (maybe 1000 sentences)
 - must be different from test set
- Current model *translates* this development set
 - *n*-best list of translations (n=100, 10000)
 - translations in n-best list can be scored
- Feature weights are *adjusted*
- N-Best list generation and feature weight adjustment repeated for a number of iterations

Discriminative training

Discriminative vs. generative models

- Generative models
 - translation process is broken down to *steps*
 - each step is modeled by a *probability distribution*
 - each probability distribution is estimated from the data by *maximum likelihood*
- Discriminative models
 - model consist of a number of *features* (e.g. the language model score)
 - each feature has a *weight*, measuring its value for judging a translation as correct
 - feature weights are *optimized on development data*, so that the system output matches correct translations as close as possible

Learning task

- Task: *find weights*, so that feature vector of best translations *ranked first*
- Input: Er geht ja nicht nach Hause, Ref: He does not go home

Translation	Feature values					Error	
it is not under house	-32.22	-9.93	-19.00	-5.08	-8.22	-5	0.8
he is not under house	-34.50	-7.40	-16.33	-5.01	-8.15	-5	0.6
it is not a home	-28.49	-12.74	-19.29	-3.74	-8.42	-5	0.6
it is not to go home	-32.53	-10.34	-20.87	-4.38	-13.11	-6	0.8
it is not for house	-31.75	-17.25	-20.43	-4.90	-6.90	-5	0.8
he is not to go home	-35.79	-10.95	-18.20	-4.85	-13.04	-6	0.6
he does not home	-32.64	-11.84	-16.98	-3.67	-8.76	-4	0.2
it is not packing	-32.26	-10.63	-17.65	-5.08	-9.89	-4	0.8
he is not packing	-34.55	-8.10	-14.98	-5.01	-9.82	-4	0.6
he is not for home	-36.70	-13.52	-17.09	-6.22	-7.82	-5	0.4

Och's minimum error rate training (MERT)

• Line search for best feature weights

```
given: sentences with n-best list of
translations
iterate n times
  randomize starting feature weights
      iterate until convergences
          for each feature
            find best feature weight
            update if different from current
return best feature weights found in any
iteration
```


Find Best Feature Weight

- Core task:
 - find optimal value for one parameter weight λ
 - ... while leaving all other weights constant
- Score of translation i for a sentence **f**:

$$p(\mathbf{e}_i|\mathbf{f}) = \lambda a_i + b_i$$

- Recall that:
 - we deal with 100s of translations \mathbf{e}_i per sentence \mathbf{f}
 - we deal with 100s or 1000s of sentences ${\bf f}$
 - we are trying to find the value λ so that over all sentences, the error score is optimized

Translations for one Sentence

• each translation is a line $p(\mathbf{e}_i | \mathbf{f}) = \lambda a_i + b_i$

- the model-best translation for a given λ (x-axis), is highest line at that point
- there are one a few *threshold points* t_j where the model-best line changes

Finding the Optimal Value for λ

- Real-valued λ can have infinite number of values
- But only on threshold points, one of the model-best translation changes
- \Rightarrow Algorithm:
 - find the threshold points
 - for each interval between threshold points
 - * find best translations
 - * compute error-score
 - pick interval with best error-score

BLEU error surface

• Varying one parameter: a rugged line with many local optima

Unstable outcomes: weights vary

component	run 1	run 2	run 3	run 4	run 5	run 6
distance	0.059531	0.071025	0.069061	0.120828	0.120828	0.072891
lexdist 1	0.093565	0.044724	0.097312	0.108922	0.108922	0.062848
lexdist 2	0.021165	0.008882	0.008607	0.013950	0.013950	0.030890
lexdist 3	0.083298	0.049741	0.024822	-0.000598	-0.000598	0.023018
lexdist 4	0.051842	0.108107	0.090298	0.111243	0.111243	0.047508
lexdist 5	0.043290	0.047801	0.020211	0.028672	0.028672	0.050748
lexdist 6	0.083848	0.056161	0.103767	0.032869	0.032869	0.050240
lm 1	0.042750	0.056124	0.052090	0.049561	0.049561	0.059518
lm 2	0.019881	0.012075	0.022896	0.035769	0.035769	0.026414
lm 3	0.059497	0.054580	0.044363	0.048321	0.048321	0.056282
ttable 1	0.052111	0.045096	0.046655	0.054519	0.054519	0.046538
ttable 1	0.052888	0.036831	0.040820	0.058003	0.058003	0.066308
ttable 1	0.042151	0.066256	0.043265	0.047271	0.047271	0.052853
ttable 1	0.034067	0.031048	0.050794	0.037589	0.037589	0.031939
phrase-pen.	0.059151	0.062019	-0.037950	0.023414	0.023414	-0.069425
word-pen	-0.200963	-0.249531	-0.247089	-0.228469	-0.228469	-0.252579

Unstable outcomes: scores vary

• Even different scores with different runs (varying 0.40 on dev, 0.89 on test)

run	iterations	dev score	test score
1	8	50.16	51.99
2	9	50.26	51.78
3	8	50.13	51.59
4	12	50.10	51.20
5	10	50.16	51.43
6	11	50.02	51.66
7	10	50.25	51.10
8	11	50.21	51.32
9	10	50.42	51.79

More features: more components

- We would like to add **more components** to our model
 - multiple language models
 - domain adaptation features
 - various special handling features
 - using linguistic information
- \rightarrow MERT becomes even less reliable
 - runs many more iterations
 - fails more frequently

More features: factored models

- Factored translation models break up phrase mapping into smaller steps
 - multiple translation tables
 - multiple generation tables
 - multiple language models and sequence models on factors
- → Many more features

Millions of features

- Why **mix** of discriminative training and generative models?
- Discriminative training of all components
 - phrase table [Liang et al., 2006]
 - language model [Roark et al, 2004]
 - additional features
- Large-scale discriminative training
 - millions of features
 - training of full training set, not just a small development corpus

Perceptron algorithm

- Translate each sentence
- If no match with reference translation: update features

Problem: overfitting

- Fundamental problem in machine learning
 - what works best for training data, may not work well in general
 - rare, unrepresentative features may get too much weight
- **Especially severe problem** in phrase-based models
 - long phrase pairs explain well *individual sentences*
 - ... but are less general, *suspect to noise*
 - EM training of phrase models [Marcu and Wong, 2002] has same problem

Solutions

- **Restrict to short phrases**, e.g., maximum 3 words (current approach)
 - limits the power of phrase-based models
 - ... but not very much [Koehn et al, 2003]

• Jackknife

- collect phrase pairs from one part of corpus
- optimize their feature weights on another part
- IBM direct model: **only one-to-many** phrases [Ittycheriah and Salim Roukos, 2007]

Problem: reference translation

• Reference translation may be anywhere in this box

- $\bullet~$ If produceable by model \rightarrow we can compute feature scores
- If not \rightarrow we can not

Some solutions

- Skip sentences, for which reference can not be produced
 - invalidates large amounts of training data
 - biases model to shorter sentences
- Declare candidate translations closest to reference as **surrogate**
 - closeness measured for instance by smoothed BLEU score
 - may be not a very good translation: odd feature values, training is severely distorted

Experiment

• Skipping sentences with unproduceable reference hurts

Handling of reference	BLEU		
with skipping	25.81		
w/o skipping	29.61		

- When including all sentences: surrogate reference picked from 1000-best list using maximum *smoothed BLEU score* with respect to reference translation
- Czech-English task, only binary features
 - phrase table features
 - lexicalized reordering features
 - source and target phrase bigram
- See also [Liang et al., 2006] for similar approach

Better solution: early updating?

- At some point the reference translation falls out of the search space
 - for instance, due to *unknown words*:

- Early updating [Collins et al., 2005]:
 - stop search, when reference translation is not covered by model
 - only update **features involved in partial** reference / system output

Conclusions

- Currently have proof-of-concept implementation
- Future work: Overcome various technical challenges
 - reference translation may not be produceable
 - overfitting
 - mix of binary and real-valued features
 - scaling up
- More and more features are unavoidable, let's deal with them

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments

Statistical machine translation today

- Best performing methods based on phrases
 - short sequences of words
 - no use of explicit syntactic information
 - no use of morphological information
 - currently best performing method
- Progress in **syntax-based** translation
 - tree transfer models using syntactic annotation
 - still shallow representation of words and non-terminals
 - active research, improving performance

One motivation: morphology

- Models treat *car* and *cars* as completely different words
 - training occurrences of *car* have no effect on learning translation of *cars*
 - if we only see *car*, we do not know how to translate *cars*
 - rich morphology (German, Arabic, Finnish, Czech, ...) \rightarrow many word forms
- Better approach
 - analyze surface word forms into **lemma** and **morphology**, e.g.: *car* +*plural*
 - translate lemma and morphology separately
 - generate target surface form

Factored translation models

• Factored represention of words

- Goals
 - Generalization, e.g. by translating lemmas, not surface forms
 - **Richer model**, e.g. using syntax for reordering, language modeling)

Related work

- **Back off** to representations with richer statistics (lemma, etc.) [Nießen and Ney, 2001, Yang and Kirchhoff 2006, Talbot and Osborne 2006]
- Use of additional annotation in pre-processing (POS, syntax trees, etc.) [Collins et al., 2005, Crego et al, 2006]
- Use of additional annotation in re-ranking (morphological features, POS, syntax trees, etc.)
 [Och et al. 2004, Koehn and Knight, 2005]
- \rightarrow we pursue an *integrated approach*
- Use of syntactic tree structure [Wu 1997, Alshawi et al. 1998, Yamada and Knight 2001, Melamed 2004, Menezes and Quirk 2005, Chiang 2005, Galley et al. 2006]
- \rightarrow may be *combined* with our approach

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments

Decomposing translation: example

• **Translate** lemma and syntactic information **separately**

Decomposing translation: example

• Generate surface form on target side

Translation process: example

- Input: (Autos, Auto, NNS)
- 1. Translation step: lemma \Rightarrow lemma (?, car, ?), (?, auto, ?)
- Generation step: lemma ⇒ part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NN), (?, auto, NNS)
- 3. Translation step: part-of-speech \Rightarrow part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NNP), (?, auto, NNS)
- Generation step: lemma,part-of-speech ⇒ surface (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments

Model

- Extension of *phrase model*
- Mapping of foreign words into English words broken up into steps
 - translation step: maps foreign factors into English factors (on the phrasal level)
 - generation step: maps English factors into English factors (for each word)
- Each step is modeled by one or more *feature functions*
 - fits nicely into log-linear model
 - weight set by discriminative training method
- Order of mapping steps is chosen to optimize search

Phrase-based training

• Establish word alignment (GIZA++ and symmetrization)

Phrase-based training

• Extract phrase

 \Rightarrow natürlich hat john — naturally john has

Factored training

• Annotate training with factors, extract phrase

 \Rightarrow ADV V NNP — ADV NNP V

Training of generation steps

- Generation steps map target factors to target factors
 - typically trained on target side of parallel corpus
 - may be trained on additional monolingual data
- Example: *The*/DET *man*/NN *sleeps*/VBZ
 - count collection
 - count(*the*,DET)++
 - count(*man*,NN)++
 - count(*sleeps*, VBZ)++
 - evidence for probability distributions (max. likelihood estimation)
 - p(DET|*the*), p(*the*|DET)
 - p(NN|man), p(man|NN)
 - p(VBZ|*sleeps*), p(*sleeps*|VBZ)

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments

Phrase-based translation

- Task: *translate this sentence* from German into English
 - er geht ja nicht nach hause

• Task: translate this sentence from German into English

• *Pick* phrase in input, *translate*

• Task: translate this sentence from German into English

- Pick phrase in input, translate
 - it is allowed to pick words *out of sequence* (reordering)
 - phrases may have multiple words: *many-to-many* translation

• Task: translate this sentence from German into English

• Pick phrase in input, translate

• Task: translate this sentence from German into English

• Pick phrase in input, translate

Translation options

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Translation options

- The machine translation decoder does not know the right answer
- \rightarrow Search problem solved by heuristic beam search

Decoding process: precompute translation options

Decoding process: start with initial hypothesis

Decoding process: hypothesis expansion

Decoding process: hypothesis expansion

Decoding process: hypothesis expansion

Decoding process: find best path

Factored model decoding

- Factored model decoding introduces *additional complexity*
- Hypothesis expansion not any more according to simple translation table, but by *executing a number of mapping steps*, e.g.:
 - 1. translating of $\textit{lemma} \rightarrow \textit{lemma}$
 - 2. translating of *part-of-speech*, *morphology* \rightarrow *part-of-speech*, *morphology*
 - 3. generation of *surface form*
- Example: haus|NN|neutral|plural|nominative
 → { houses|house|NN|plural, homes|home|NN|plural, buildings|building|NN|plural, shells|shell|NN|plural }
- Each time, a hypothesis is expanded, these mapping steps have to applied

Efficient factored model decoding

- Key insight: executing of mapping steps can be *pre-computed* and stored as translation options
 - apply mapping steps to all input phrases
 - store results as *translation options*
 - \rightarrow decoding algorithm <code>unchanged</code>

Efficient factored model decoding

- Problem: *Explosion* of translation options
 - originally limited to 20 per input phrase
 - even with simple model, now 1000s of mapping expansions possible
- Solution: *Additional pruning* of translation options
 - keep only the best expanded translation options
 - current default 50 per input phrase
 - decoding only about 2-3 times slower than with surface model

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments

Adding linguistic markup to output

- Generation of POS tags on the target side
- Use of high order language models over POS (7-gram, 9-gram)
- Motivation: syntactic tags should enforce syntactic sentence structure model not strong enough to support major restructuring

Some experiments

• English–German, Europarl, 30 million word, test2006

Model	BLEU
best published result	18.15
baseline (surface)	18.04
surface + POS	18.15

• German-English, News Commentary data (WMT 2007), 1 million word

Model	BLEU
Baseline	18.19
With POS LM	19.05

- Improvements under sparse data conditions
- Similar results with CCG supertags [Birch et al., 2007]

Sequence models over morphological tags

die	hellen	Sterne	erleuchten	das	schwarze	Himmel
(the)	(bright)	(stars)	(illuminate)	(the)	(black)	(sky)
fem	fem	fem	-	neutral	neutral	male
plural	plural	plural	plural	sgl.	sgl.	sgl
nom.	nom.	nom.	-	acc.	acc.	acc.

- Violation of noun phrase agreement in gender
 - das schwarze and schwarze Himmel are perfectly fine bigrams
 - but: das schwarze Himmel is not
- If relevant n-grams does not occur in the corpus, a lexical n-gram model would *fail to detect* this mistake
- Morphological sequence model: p(N-male|J-male) > p(N-male|J-neutral)

Local agreement (esp. within noun phrases)

- High order language models over POS and morphology
- Motivation
 - DET-sgl NOUN-sgl good sequence
 - DET-sgl NOUN-plural bad sequence

Agreement within noun phrases

- Experiment: 7-gram POS, morph LM in addition to 3-gram word LM
- Results

Method	Agreement errors in NP	devtest	test
baseline	15% in NP \geq 3 words	18.22 BLEU	18.04 BLEU
factored model	4% in NP \geq 3 words	18.25 BLEU	18.22 BLEU

- Example
 - baseline: ... zur zwischenstaatlichen methoden ...
 - factored model: ... zu zwischenstaatlichen methoden ...
- Example
 - baseline: ... das zweite wichtige änderung ...
 - factored model: ... die zweite wichtige änderung ...

Morphological generation model

- Our motivating example
- Translating lemma and morphological information more robust

Initial results

• Results on 1 million word News Commentary corpus (German–English)

System	In-doman	Out-of-domain	
Baseline	18.19	15.01	
With POS LM	19.05	15.03	
Morphgen model	14.38	11.65	

- What went wrong?
 - why back-off to lemma, when we know how to translate surface forms?
 - $\rightarrow~$ loss of information

Solution: alternative decoding paths

- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off

Results

• Model now beats the baseline:

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65
Both model paths	19.47	15.23

Adding annotation to the source

- Source words may lack sufficient information to map phrases
 - English-German: what case for noun phrases?
 - Chinese-English: plural or singular
 - pronoun translation: what do they refer to?
- Idea: add additional information to the source that makes the required information available locally (where it is needed)
- see [Avramidis and Koehn, ACL 2008] for details

Case Information for English–Greek

- Detect in English, if noun phrase is subject/object (using parse tree)
- Map information into case morphology of Greek
- Use case morphology to generate correct word form

Obtaining Case Information

• Use syntactic parse of English input (method similar to semantic role labeling)

Results English-Greek

• Automatic BLEU scores

System	devtest	test07		
baseline	18.13	18.05		
enriched	18.21	18.20		

• Improvement in verb inflection

System	Verb count	Errors	Missing
baseline	311	19.0%	7.4%
enriched	294	5.4%	2.7%

• Improvement in noun phrase inflection

System	NPs	Errors	Missing
baseline	247	8.1%	3.2%
enriched	239	5.0%	5.0%

• Also successfully applied to English-Czech

Factored Template Models

- Long range reordering
 - movement often not limited to local changes
 - German-English: SBJ AUX OBJ V \rightarrow SBJ AUX V OBJ
- Template models
 - some factor mappings (POS, syntactic chunks) may have longer scope than others (words)
 - larger mappings form template for shorter mappings
 - computational problems with this
- published in [Hoang and Koehn, EACL 2009]

Shallow syntactic features

the	paintings	of	the	old	man	are	beautiful
-	plural	-	-	-	singular	plural	-
B-NP	I-NP	B-PP	I-PP	I-PP	I-PP	V	B-ADJ
SBJ	SBJ	OBJ	OBJ	OBJ	OBJ	V	ADJ

- Shallow syntactic tasks have been formulated as sequence labeling tasks
 - base noun phrase chunking
 - syntactic role labeling
- Results presented in [Cettolo et al., AMTA 2008]