Memory Based MT

Antal van den Bosch Peter Berck

Tilburg centre for Creative Computing

Tilburg University

The Netherlands

http://ilk.uvt.nl/mbmt

Outline

- MBMT
- Evaluation
- Software
- Conclusions

What is Memory Based MT?

- Example based MT
- Take bits of source text, map to bits of target text
- Recombine the target bits into a sentence

Use (GIZA++) aligned sentences

Aligned Text

De stemming vindt vanavond plaats.

The vote will take place this evening

- Use (GIZA++) aligned sentences
- Use trigrams

Trigram Mapping

- Use (GIZA++) aligned sentences
- Use trigrams
- Decision tree based k-NN classifier

IGTree

- Use (GIZA++) aligned sentences
- Use trigrams
- Decision tree based k-NN classifier
- Decoder

Recombine

- Use (GIZA++) aligned sentences
- Use trigrams
- Decision tree based k-NN classifier
- Decoder
- LM assigns perplexity score to sentence

LM Disambiguation

NGOs are good within the European Union . perplexity = 198.326

NGOs are good the EU , within the European . Perplexity = 243.701

- Use (GIZA++) aligned sentences
- Use trigrams
- Decision tree based k-NN classifier
- Decoder: when more than one answer, use language model
- LM assigns perplexity score to sentence
- No explicit linguistic knowledge

deze zin kan nooit vertaald worden. MT Marathon 2009 Prague

Experiments

OpenSub

JRC-Aquis

EMEA

LM: Reuters

2 million instances

14 million instances

9 million instances

37 million instances

Results: OpenSub

	WER	PER	BLEU	METEOR	NIST
Moses	53.2878	46.9615	0.3289	0.5407899	5.9035
MBMT	68.3948	61.3335	0.1631	0.4015985	4.2428
Google	50.0984	45.0847	0.3056	0.5223539	5.7893
Systran	60.7691	54.6135	0.1749	0.4500350	4.5828

Results: JRC-Aquis

	WER	PER	BLEU	METEOR	NIST
MBMT	58.5586	36.7447	0.4513	0.6336529	7.8306
Google	48.4244	32.8729	0.4713	0.6511708	8.2668
Systran	60.8488	43.0711	0.3321	0.5549924	6.7365

Results: EMEA

	WER	PER	BLEU	METEOR	NIST
Moses	46.5543	39.3553	0.4701	0.6501440	7.0593
MBMT	72.7873	63.6633	0.2633	0.4801131	5.1145
Google	57.5692	50.4385	0.3918	0.5829913	6.3772
Systran	63.2418	55.1430	0.2895	0.5366058	5.4716

Results: Performance & Speed

	WER	PER	BLEU	METEOR	NIST	Train	Test
MBMT	72.7	63.6	0.238	0.460	4.97	20:17	0:08
Moses	46.6	39.4	0.470	0.650	7.06	3:10:06	2:51

MBMT

Memory-based machine translation

Antal.vdnBosch@uvt.nl | Last update: Sun Jan 18 2009

WOPR

Memory-based word prediction and language modeling

WOPR is a wrapper around the k-nearest neighbor classifier in TiMBL, offering word prediction and language modeling functionalities. Trained on a text corpus, WOPR can predict missing words, report perplexities at the word level and the text level, and generate spelling correction hypotheses.

The WOPR name is obviously a blatant cultural reference to the mainframe computer WOPR, "War Operation Plan Response", a key role player in the 1983 US movie War Games. Through a hacked phone dailup connection, WOPR enjoys playing games with a teenager played by a young Matthew Broderick, almost causing a full nuclear war. Image from Wikipedia.

Features

- · Generates language models
- Tests language models on new text, reporting perplexities, prediction distributions, word-level entropies and perplexities
- Optionally exports ARPA-formatted language model files
- . Optionally filters its output for spelling correction candidates

WOPR is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation.

Written by

WOPR is written by Peter Berck, with input from Antal van den Bosch and Ko van der Sloot.

Archived versions

version 1.4.6

http://ilk.uvt.nl/wopr

Specs

mbmt.sh script which uses:

- MBMT
 - C programs to make instances and recombine
- Wopr
 - C++ language model
- Timbl
 - C++ instance based learner
- Tested on Linux and OS X

Quickstart

- Install Timbl, Wopr and мвмт
- Run the mbmt.sh script which:
 - Takes an aligned file
 - Creates instances
 - Trains translation and language models
 - Runs test set

Conclusions: Cons

- Inferior to Moses
- Because:
 - No smoothing
 - No fertility or "null" model
 - Limited to trigrams

Conclusions: Pro

- Speed
 - training and decoding
- Memory footprint low

Memory & Speed

Performance

Future work

- Constraint Satisfaction Inference (CSI)
 - Integration of fertility model and "null model"
- Parameters
 - Beam in search
 - Classifier parameters (speed-accuracy trade-off)
 - Higher n in n-grams
- Reliance on word aligner
 - Test BerkeleyAligner

Thank you

http://ilk.uvt.nl/mbmt

