

Statistical Language Models

Nicola Bertoldi FBK-irst Trento, Italy

Fifth MT Marathon, Le Mans, France

13-18 September 2010

Outline

- Introduction
- $\bullet~$ Role of LM in ASR and MT
- Evaluation of Language Models
- *n*-gram Language Models
- Smoothing and Discounting
- Enhancement to *n*-gram LM
- Notes about training

Credits:

• M. Federico (FBK-irst, Trento)

Statistical Language Model

What is it?

- A Language Model provides a score for any word sequences to determine how likely they are:
 - ASR output: "recognize speech" or "wreck a nice beach"?
- probability distribution over the sequences of a given language V^{∞} :

$$\Pr(w_1^T), \quad w_i \in V, \quad i = 1, \dots, T, \quad \exists T$$
(1)

What is it for?

- any application aiming at producing a fluent output
 - Speech Recognition
 - Machine Translation
 - Optical Character Recognition
 - Spelling Correction
 - ... and many other Statistical tasks coping with strings

Fundamental Equation of ASR

Goal: find the words \mathbf{w}^* in a speech signal \mathbf{x} such that:

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w}} \Pr(\mathbf{x} \mid \mathbf{w}) \Pr(\mathbf{w})$$
(2)

Problems:

- language modeling (LM): estimating $Pr(\mathbf{w})$
- acoustic modeling (AM): estimating $Pr(\mathbf{x} \mid \mathbf{w})$
- search problem: computing Eq. (2)

AM sums over hidden state sequences ${\bf s}$ a Markov process of $({\bf x},{\bf s})$ from ${\bf w}$

$$\Pr(\mathbf{x} \mid \mathbf{w}) = \sum_{\mathbf{s}} \Pr(\mathbf{x}, \mathbf{s} \mid \mathbf{w})$$

Hidden Markov Model: hidden states "link" speech frames to words.

Fundamental Equation of SMT

Goal: find the English string f translating the foreign text f such that:

$$\mathbf{e}^* = \operatorname*{argmax}_{\mathbf{e}} \Pr(\mathbf{f} \mid \mathbf{e}) \Pr(\mathbf{e})$$
(3)

Problems:

- language modeling (LM): estimating Pr(e)
- translation modeling (TM): estimating $\Pr(\mathbf{f} \mid \mathbf{e})$
- search problem: computing Eq. (3)

TM sums over hidden alignments \mathbf{a} a stochastic process generating (\mathbf{f}, \mathbf{a}) from \mathbf{e} .

$$\Pr(\mathbf{f} \mid \mathbf{e}) = \sum_{\mathbf{a}} \Pr(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

Alignment Models: hidden alignments "link" foreign words with English words.

ASR and MT Architectures

- $\bullet \ \mbox{Parallel data}$ are samples of observations (\mathbf{x},\mathbf{w}) and (\mathbf{f},\mathbf{e})
- $\bullet\,$ AM and TM can be machine-learned without observing ${\bf s}$ and ${\bf a}\,$
- $\bullet\,$ AM is "simpler" than TM, because of monotonicity of $({\bf x},{\bf s})$ and ${\bf w}\,$
- LM is trained on monolingual texts

Language Model Evaluation

- Indirect: impact on task
 - Word Error Rate in ASR
 - BLEU score for MT
 - Precision and Recall for Spelling Correction
- Direct: capability of predicting words of your language
 - how difficult is the guess of:
 - * the next digit of a phone number (after +39339728)? 10
 - \ast the PIN number (of 5 digits)? 10^5
 - * the next word after "the UEFA Champions"? 1 (if you are a football fan)
 - perplexity measure

6

Language Model Perplexity

The perplexity (PP) measure is the geometric average inverse probability

$$PP = \sqrt[T]{\frac{1}{\Pr(w_1^T)}} \tag{4}$$

but usually expressed as follows (for the sake of computation):

$$PP = 2^{LP}$$
 where $LP = -\frac{1}{T}\log_2 p(w_1^T)$ (5)

- w_1^T is a sufficiently long test sample
- $p(w_1^T)$ is the LM probability

Language Model Perplexity

The perplexity (PP) measure is the geometric average inverse probability

$$PP = 2^{LP}$$
 where $LP = -\frac{1}{T}\log_2 p(w_1^T)$ (6)

Properties:

- $0 \le PP \le |V|$ (size of the vocabulary V)
- predictions are as good as guessing among PP equally likely options
- \bullet the cross-entropy of the model on test sample is 2^{PP}
- the true model has the lowest possible PP
- lower the PP, closer your model to the true model

Good: there is typical strong correlation between PP and BLUE scores!

Statistical Language Model

Goal: given a text $w_1^T = w_1 \dots, w_t, \dots, w_T$, where $w_i \in V$, we can compute its probability by:

$$\Pr(w_1^T) = \Pr(w_1) \prod_{t=2}^T \Pr(w_t \mid h_t)$$
(7)

where $h_t = w_1, \ldots, w_{t-1}$ indicates the history of word w_t .

ssues:

- $Pr(w_t \mid h_t)$ becomes difficult to estimate as the history h_t grows
 - parameter space: exponential amount of parameters
 - data sparseness: most of $(w \mid h)$ are rare events even in large corpora.

Solutions:

- take an approximation for the history: $h_t \approx w_{t-n+1} \dots w_{t-1}$
 - *n*-gram approximation: $h_t \approx w_{t-n+1} \dots w_{t-1}$
 - class-based approximation: $h_t \approx c(w_1) \dots c(w_{t-1})$

9

N-gram Language Model

Goal: given a text $w_1^T = w_1 \dots, w_t, \dots, w_T$ we can compute its probability by:

$$\Pr(w_1^T) = \Pr(w_1) \prod_{t=2}^T \Pr(w_t \mid w_{t-n+1} \dots w_{t-1})$$
(8)

where the *n*-gram approximation is applied: $h_t \approx w_{t-n+1} \dots w_{t-1}$

e.g. Full history: Pr(Parliament | I declare resumed the session of the European)3 - gram: Pr(Parliament | the European)

The choice of n determines the complexity of the LM (# of parameters):

- **bad**: no magic recipe about the optimal order n for a given task
- good: language models can be evaluated quite cheaply, because based on *n*-grams statistics gathered from a training corpus

N-gram Probabilities

Estimating *n*-gram probabilities $Pr(w_t \mid w_{t-n+1} \dots w_{t-1})$ is not trivial due to:

- parameter space: with 10,000-word V we can form one trillion 3-grams!
- data sparseness: most of 3-grams are rare events even in large corpora.

Relative frequency estimate: MLE of any discrete conditional distribution is:

$$f(w \mid x \mid y) = \frac{c(x \mid y \mid w)}{\sum_{w} c(x \mid y \mid w)}$$

where counts $c(\cdot)$ are taken over a large training corpus.

Problem: relative frequencies in general overfit the training data

- if the test sample contains a "new" $n\text{-}\mathsf{gram},$ then $\mathsf{PP}\to+\infty$
- with 4-grams or 5-grams LM this is largely the most frequent case!

We need smoothing!

Frequency Smoothing

Issue: $f(w \mid x \mid y) > 0$ only if w was observed after x y in the training data.

Idea: for each w take off some fraction of probability from $f(w \mid x \mid y)$ and redistribute the total to words never observed after $x \mid y$.

• the discounted frequency $f^*(w \mid x y)$ satisfies:

 $0 \le f^*(w \mid x \ y) \le f(w \mid x \ y) \qquad \forall x, y, w \in V$

Notice: in general $f^*(w \mid x y)$ does not sum up to 1!

• the "total discount" is called zero-frequency probability $\lambda(x \ y)^1$:

$$\lambda(x \ y) = 1.0 - \sum_{w \in V} f^*(w \mid x \ y)$$

How to redistribute the total discount?

¹Notice: $\lambda(x \ y) = 1$ if $f(w \mid x \ y) = 0$ for all w, i.e. $c(x \ y) = 0$.

12

Discounting Example

Frequency Smoothing

Insight: redistribute $\lambda(x \ y)$ according to the lower-order probability $p(w \mid y)$: Two major hierarchical schemes to compute the smoothed probability $p(w \mid x \ y)$: • Back-off, i.e. select the best available *n*-gram approximation:

$$p(w \mid x \ y) = \begin{cases} f^*(w \mid x \ y) & \text{if } f^*(w \mid x \ y) > 0\\ \alpha_{xy}\lambda(x \ y)p(w \mid y) & \text{otherwise} \end{cases}$$
(9)

where α_{xy} is an appropriate normalization term.

• Interpolation, i.e. sum up the two approximations:

$$p(w \mid x \; y) = f^*(w \mid x \; y) + \lambda(x \; y)p(w \mid y).$$
(10)

Smoothed probability are learned bottom-up, starting from 1-grams ...

Frequency Smoothing of 1-grams

Unigram smoothing permits to treat out-of-vocabulary (OOV) words in the LM.

Assumptions:

- |U| is an upper-bound estimate of the size of language vocabulary
- $f^*(w)$ is strictly positive on the observed vocabulary V
- λ is the total discount reserved to OOV words

Then: 1-gram back-off and interpolation collapse to:

$$p(w) = \begin{cases} f^*(w) & \text{if } w \in V \\ \lambda \frac{1}{(|U| - |V|)} & \text{otherwise} \end{cases}$$
(11)

Notice: LMs make also other approximations when an OOV word x appears:

$$p(w \mid h_1 \ x \ h_2) = p(w \mid h_2)$$
 and $p(x \mid h) = p(x)$

Important: use a common value |U| when comparing/combining different LMs!

Witten-Bell estimate (WB) [Witten and Bell, 1991]

- Insight: learn $\lambda(x \ y)$ by counting "new word" events in 3-grams x y *
 - corpus: x y u x x y t t x y u w x y w x y t u x y u x y t - then $\lambda(x y) \propto$ number of "new word" events (i.e. 3)
 - and $f^*(w \mid x \mid y) \propto$ relative frequency (linear discounting)
- Solution:

$$\lambda(x \ y) = \frac{n(x \ y \ *)}{c(x \ y) + n(x \ y \ *)} \quad \text{and} \quad f^*(w \mid xy) = \frac{c(x \ y \ w)}{c(x \ y) + n(x \ y \ *)}$$

where $c(x \ y) = \sum_{w} c(x \ y \ w)$ and $n(x \ y \ *) = |\{w : c(x \ y \ w) > 0\}|.$

- Pros: easy to compute, robust for small corpora, works with artificial data.
- Cons: underestimates probability of frequent *n*-grams

- interpolation and back-off with WB discounting
- trigram LMs estimated on the English Europarl corpus
- logprobs of 3-grams of type aiming at _ observed in training

- peaks correspond to very probable 2-grams interpolated with f^* respectively: at that, at national, at European
- Practically, interpolation and back-off perform similarly

Absolute Discounting (AD) [Ney and Essen, 1991]

• Insight:

– discount by subtracting a small constant β ($0 < \beta \leq 1$) from each counts

• Solution:

- Notice:
 - one distinct β for each n-gram order
 - leave-one-out estimate of β on the training data [Ney, Essen and Kneser, 1994]
- Pros: easy to compute, accurate estimate of frequent *n*-grams.
- Cons: problematic with small and artificial samples.

Kneser-Ney method (KN) [Kneser and Ney, 1995]

- Insight:
 - marginals of the higher-order smoothed probs should match the training data
 - count all "back-off" events in 3-grams of type * y w (cf. WB method)
 - corpus: x y w x t y w t x y w u y w t y w u x y w u u y w
- Solution:

$$f^*(w \mid y) = max \left\{ \frac{n(* \mid y \mid w) - \beta}{n(* \mid y \mid *)}, 0 \right\} \text{ which gives } \lambda(y) = \beta \frac{\sum_{w:n(* \mid y \mid w) > 1} 1}{n(* \mid y \mid *)}$$

where $n(* \ y \ w) = |\{x : c(x \ y \ w) > 0\}|$ and $n(* \ y \ *) = |\{x \ w : c(x \ y \ w) > 0\}|$

- Pros: better back-off probabilities, can be applied to other methods
- Cons: higher-order probs can not be estimated from lower order probs
- Notice: corrected counts (usually) used only for 1- and 2-grams

Modified Kneser-Ney (MKN) [Chen and Goodman, 1999]

- Insight: specific discounting coefficients for unfrequent *n*-grams
- Solution:

$$f^*(w \mid x \ y) = \frac{c(x \ y \ w) - \beta(c(x \ y \ w))}{c(x \ y)}$$

where $\beta(0) = 0$, $\beta(1) = D_1$, $\beta(2) = D_2$, $\beta(c) = D_{3+}$ if $c \ge 3$,

- Notice: coefficients are computed from n_r statistics, corrected counts used for lower order n-grams
- Pros: see previous + more fine grained smoothing
- Cons: see previous + more sensitiveness to noise

Important: LM interpolation with MKN is the most popular training method. Under proper training conditions it gives the best PP and BLEU scores!

- train: interpolation with WB and MKN discounting on Europarl
- \bullet test: 3-grams of type aiming at $_$ are from the Google 1TWeb sample

• the trend is the same but MKN outperforms WB smoothing If you don't believe, check the next slide

- train: interpolation with WB and MKN discounting on Europarl
- \bullet test: 3-grams of type aiming at $_$ are from the Google 1TWeb sample
- plot: cumulative score differences between MKN and WB on top 1000 3-grams

Is LM Smoothing Necessary?

or it is enough increasing training data?

• Stupid Back-off [Brants et al., 2007]

- simple smoothing, no correct normalization

$$p(w \mid x \mid y) = \begin{cases} f(w \mid x \mid y) & \text{if } f(w \mid x \mid y) > 0\\ k \cdot p(w \mid y) & \text{otherwise} \end{cases}$$
(12)

where k = 0.4 and p(w) = c(w)/N.

 Comparison between Stupid Back-off (SB) and Modified Kneser-Ney (KN) on the 2006 Arabic-English NIST MT task

23

Is LM Smoothing Necessary?

• Conclusion: proper smoothing useful up to 1 billion word training data?

Class-based Language Model

• Insight:

- some words are similar in their meaning and syntactic function
- the probability of such similar words in similar context are likely similar
- Solution: given the class c_i of any word $w_i \in w_1^T$

$$\Pr(w_1^T) = \Pr(c_1^T) \prod_{t=1}^T \Pr(w_t \mid c_t)$$
(13)

• Notice:

- reduction of data sparseness, more reliable estimation for rare events
- used when few training data
- usually combined with the n-gram approximation over classes
- longer context (larger n)
- any classification/clustering methods could be applied

Language Model interpolation

Given several LMs $Pr_i(w \mid h)$ estimated on different training corpora, an interpolated LM can be built by means of:

• External interpolation:

$$\Pr(w \mid h) = \sum_{i=1}^{K} \eta_i \, \Pr_i(w \mid h) \tag{14}$$

• Internal interpolation: Notice: all LMs of the same type

$$f^*(w \mid h) = \sum_{i=1}^{K} \mu_i(h) \ f_i^*(w \mid h) \qquad \lambda(h) = \sum_{i=1}^{K} \mu_i(h) \ \lambda_i(h)$$
(15)

- Notice:
 - domain adaptation and adaptation over time
 - split training effort

References

- [Brants et al., 2007] Brants, T., et al. (2007). Large language models in machine translation. In <u>EMNLP</u>, pages 858–867, Prague, Czech Republic.
- [Chen and Goodman, 1999] Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. <u>Computer Speech and Language</u>, 4(13):359–393.
- [Federico and Bertoldi, 2006] Federico, M. and Bertoldi, N. (2006). How many bits are needed to store probabilities for phrase-based translation? In <u>Workshop on Statistical Machine</u> <u>Translation</u>, pages 94–101, New York City.
- [Kneser and Ney, 1995] Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling. In <u>ICASSP</u>, volume 1, pages 181–184, Detroit, MI.
- [Ney and Essen, 1991] Ney, H. and Essen, U. (1991). On smoothing techniques for bigram-based natural language modelling. In <u>ICASSP</u>, pages S12.11:825–828, Toronto, Canada.
- [Ney, Essen and Kneser, 1994] Ney, H, et al. (1994). On structuring probabilistic dependences in stochastic language modelling Computer Speech and Language, 8:1-38.
- [Witten and Bell, 1991] Witten, I. H. and Bell, T. C. (1991). The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. <u>IEEE Transaction</u> <u>Information Theory</u>, IT-37(4):1085–1094.

Goodman, J. http://research.microsoft.com/en-us/um/people/joshuago/icmldescription.htm