MT Marathon Statistical machine translation: IBM Models and word alignment

Alexandra Birch and Philipp Koehn

January 2010
informatics

Lexical translation

- How to translate a word \rightarrow look up in dictionary

Haus - house, building, home, household, shell.

- Multiple translations
- some more frequent than others
- for instance: house, and building most common
- special cases: Haus of a snail is its shell
- Note: During all the lectures, we will translate from a foreign language into English

Collect statistics

- Look at a parallel corpus (German text along with English translation)

Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

Estimate translation probabilities

- Maximum likelihood estimation

$$
p_{f}(e)= \begin{cases}0.8 & \text { if } e=\text { house } \\ 0.16 & \text { if } e=\text { building } \\ 0.02 & \text { if } e=\text { home } \\ 0.015 & \text { if } e=\text { household } \\ 0.005 & \text { if } e=\text { shell. }\end{cases}
$$

Alignment

- In a parallel text (or when we translate), we align words in one language with the words in the other

- Word positions are numbered 1-4

9. School of

Alignment function

- Formalizing alignment with an alignment function
- Mapping an English target word at position i to a German source word at position j with a function $a: i \rightarrow j$
- Example

$$
a:\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4\}
$$

Reordering

- Words may be reordered during translation

One-to-many translation

- A source word may translate into multiple target words

1	2	3		
das	Haus	ist	klitzeklein	
the	house	is	very	small
1	2	3	4	5
$a:\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4,5 \rightarrow$				

Dropping words

- Words may be dropped when translated
- The German article das is dropped

Inserting words

- Words may be added during translation
- The English just does not have an equivalent in German
- We still need to map it to something: special NULL token

IBM Model 1

- Generative model: break up translation process into smaller steps
- IBM Model 1 only uses lexical translation
- Translation probability
- for a foreign sentence $\mathbf{f}=\left(f_{1}, \ldots, f_{l_{f}}\right)$ of length l_{f}
- to an English sentence $\mathbf{e}=\left(e_{1}, \ldots, e_{l_{e}}\right)$ of length l_{e}
- with an alignment of each English word e_{j} to a foreign word f_{i} according to the alignment function $a: j \rightarrow i$

$$
p(\mathbf{e}, a \mid \mathbf{f})=\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)
$$

- parameter ϵ is a normalization constant

Example

das	
e	$t(e \mid f)$
the	0.7
that	0.15
which	0.075
who	0.05
this	0.025

Haus

e	$t(e \mid f)$
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

ist

e	$t(e \mid f)$
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

klein

e	$t(e \mid f)$
small	0.4
little	0.4
short	0.1
minor	0.06
petty	0.04

$$
\begin{aligned}
p(e, a \mid f) & =\frac{\epsilon}{5^{4}} \times t(\text { the } \mid \text { das }) \times t(\text { house } \mid \text { Haus }) \times t(\text { is } \mid \text { ist }) \times t(\text { small } \mid \text { klein }) \\
& =\frac{\epsilon}{5^{4}} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\
& =0.0028 \epsilon
\end{aligned}
$$

Learning lexical translation models

- We would like to estimate the lexical translation probabilities $t(e \mid f)$ from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
- if we had the alignments,
\rightarrow we could estimate the parameters of our generative model
- if we had the parameters,
\rightarrow we could estimate the alignments

EM algorithm

- Incomplete data
- if we had complete data, would could estimate model
- if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
- initialize model parameters (e.g. uniform)
- assign probabilities to the missing data
- estimate model parameters from completed data
- iterate

EM algorithm

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

EM algorithm

- After one iteration
- Alignments, e.g., between la and the are more likely

EM algorithm

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

EM algorithm

- Convergence
- Inherent hidden structure revealed by EM

EM algorithm

- Parameter estimation from the aligned corpus

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
- parts of the model are hidden (here: alignments)
- using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
- take assign values as fact
- collect counts (weighted by probabilities)
- estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM

- We need to be able to compute:
- Expectation-Step: probability of alignments
- Maximization-Step: count collection

IBM Model 1 and EM

- Probabilities

$$
\begin{array}{cc}
p(\text { the } \mid \mathrm{la})=0.7 & p(\text { house } \mid \mathrm{la})=0.05 \\
p(\text { the } \mid \text { maison })=0.1 & p(\text { house } \mid \text { maison })=0.8
\end{array}
$$

- Alignments

$$
\begin{aligned}
& \begin{array}{cccc}
l a \bullet \bullet \text { the } & \text { la } \bullet \bullet \text { the } & \text { la } \bullet \bullet \text { the } & \text { la } \bullet \bullet \text { the } \\
\text { maison } \bullet \bullet \text { house } & \text { maison } \bullet \bullet \text { house } & \text { maison } \bullet \bullet \text { house maison } \bullet \bullet \text { house }
\end{array} \\
& p(\mathbf{e}, a \mid \mathbf{f})=0.56 \quad p(\mathbf{e}, a \mid \mathbf{f})=0.035 \quad p(\mathbf{e}, a \mid \mathbf{f})=0.08 \quad p(\mathbf{e}, a \mid \mathbf{f})=0.005 \\
& p(a \mid \mathbf{e}, \mathbf{f})=0.824 \quad p(a \mid \mathbf{e}, \mathbf{f})=0.052 \quad p(a \mid \mathbf{e}, \mathbf{f})=0.118 \quad p(a \mid \mathbf{e}, \mathbf{f})=0.007
\end{aligned}
$$

- Counts

$$
c(\text { the } \mid \text { la })=0.824+0.052 \quad c(\text { house } \mid \text { la })=0.052+0.007
$$

$$
c(\text { the } \mid \text { maison })=0.118+0.007 \quad c(\text { house } \mid \text { maison })=0.824+0.118
$$

IBM Model 1 and EM: Expectation Step

- We need to compute $p(a \mid \mathbf{e}, \mathbf{f})$
- Applying the chain rule:

$$
p(a \mid \mathbf{e}, \mathbf{f})=\frac{p(\mathbf{e}, a \mid \mathbf{f})}{p(\mathbf{e} \mid \mathbf{f})}
$$

- We already have the formula for $p(\mathbf{e}, \mathbf{a} \mid \mathbf{f})$ (definition of Model 1)

IBM Model 1 and EM: Expectation Step

- We need to compute $p(\mathbf{e} \mid \mathbf{f})$

$$
\begin{aligned}
p(\mathbf{e} \mid \mathbf{f}) & =\sum_{a} p(\mathbf{e}, a \mid \mathbf{f}) \\
& =\sum_{a(1)=0}^{l_{f}} \cdots \sum_{a\left(l_{e}\right)=0}^{l_{f}} p(\mathbf{e}, a \mid \mathbf{f}) \\
& =\sum_{a(1)=0}^{l_{f}} \cdots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)
\end{aligned}
$$

IBM Model 1 and EM: Expectation Step

$$
\begin{aligned}
p(\mathbf{e} \mid \mathbf{f}) & =\sum_{a(1)=0}^{l_{f}} \ldots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right) \\
& =\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \sum_{a(1)=0}^{l_{f}} \ldots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right) \\
& =\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} \sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)
\end{aligned}
$$

- Note the trick in the last line
- removes the need for an exponential number of products
\rightarrow this makes IBM Model 1 estimation tractable

IBM Model 1 and EM: Expectation Step

- Combine what we have:

$$
\begin{aligned}
p(\mathrm{a} \mid \mathbf{e}, \mathbf{f}) & =p(\mathbf{e}, \mathrm{a} \mid \mathbf{f}) / p(\mathbf{e} \mid \mathbf{f}) \\
& =\frac{\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)}{\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} \sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)} \\
& =\prod_{j=1}^{l_{e}} \frac{t\left(e_{j} \mid f_{a(j)}\right)}{\sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)}
\end{aligned}
$$

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair \mathbf{e}, \mathbf{f} that word e is a translation of word f :

$$
c(e \mid f ; \mathbf{e}, \mathbf{f})=\sum_{a} p(a \mid \mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_{e}} \delta\left(e, e_{j}\right) \delta\left(f, f_{a(j)}\right)
$$

- With the same simplication as before:

$$
c(e \mid f ; \mathbf{e}, \mathbf{f})=\frac{t(e \mid f)}{\sum_{j=1}^{l_{e}} t\left(e \mid f_{a(j)}\right)} \sum_{j=1}^{l_{e}} \delta\left(e, e_{j}\right) \sum_{i=0}^{l_{f}} \delta\left(f, f_{i}\right)
$$

IBM Model 1 and EM: Maximization Step

- After collecting these counts over a corpus, we can estimate the model:

$$
t(e \mid f ; \mathbf{e}, \mathbf{f})=\frac{\left.\sum_{(\mathbf{e}, \mathbf{f})} c(e \mid f ; \mathbf{e}, \mathbf{f})\right)}{\left.\sum_{f} \sum_{(\mathbf{e}, \mathbf{f})} c(e \mid f ; \mathbf{e}, \mathbf{f})\right)}
$$

IBM Model 1 and EM: Pseudocode

```
initialize t(e|f) uniformly
do
    set count(e|f) to O for all e,f
    set total(f) to O for all f
    for all sentence pairs (e_s,f_s)
        for all words e in e_s
            total_s = 0
            for all words f in f_s
            total_s += t(e|f)
        for all words e in e_s
            for all words f in f_s
                    count(e|f) += t(e|f) / total_s
                    total(f) += t(e|f) / total_s
    for all f in domain( total(.) )
        for all e in domain( count(.|f) )
            t(e|f) = count(e|f) / total(f)
until convergence
```


Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
- training of a higher IBM model builds on previous model
- Compuationally biggest change in Model 3
- trick to simplify estimation does not work anymore
\rightarrow exhaustive count collection becomes computationally too expensive
- sampling over high probability alignments is used instead

IBM Model 4

HMM Model

- Words do not move independently of each other
- they often move in groups \rightarrow condition word movements on previous word
- HMM alignment model:

$$
p\left(a(j) \mid j a(j-1), l_{e}\right)
$$

- EM algorithm application harder, requires dynamic programming
- IBM Model 4 is similar, also conditions on word classes

Word alignment with IBM models

- IBM Models create a one-to-many mapping
- words are aligned using an alignment function
- a function may return the same value for different input (one-to-many mapping)
- a function cannot return multiple values for one input (no many-to-one mapping)
- But we need many-to-many mappings

Symmetrizing word alignments

- Intersection of GIZA++ bidirectional alignments

Symmetrizing word alignments

- Grow additional alignment points [Och and Ney, CompLing2003]

Symmetrizing word alignments

```
GROW-DIAG-FINAL(e2f,f2e):
    neighboring = ((-1,0), (0, -1), (1,0), (0, 1), (-1,-1), (-1, 1), (1, -1), (1, 1))
    alignment = intersect(e2f,f2e);
    GROW-DIAG(); FINAL(e2f); FINAL(f2e);
GROW-DIAG():
    iterate until no new points added
        for english word e = 0 ... en
            for foreign word f = 0 ... fn
            if ( e aligned with f )
                for each neighboring point ( e-new, f-new ):
                    if ( ( e-new not aligned or f-new not aligned ) and
                        ( e-new, f-new ) in union( e2f, f2e ) )
                        add alignment point ( e-new, f-new )
FINAL(a):
    for english word e-new = 0 ... en
        for foreign word f-new = 0 ... fn
            if ( ( e-new not aligned or f-new not aligned ) and
                ( e-new, f-new ) in alignment a ) add alignment point ( e-new, f-new )
```


More Recent Work on Symmetrization

- Symmetrize after each iteration of IBM Models [Matusov et al., 2004]
- run one iteration of E-step for each direction
- symmetrize the two directions
- count collection (M-step)
- Use of posterior probabilities in symmetrization
- generate n -best alignments for each direction
- calculate how often an alignment point occurs in these alignments
- use this posterior probability during symmetrization

Discriminative training methods

- Given some annotated training data, supervised learning methods are possible
- Structured prediction
- not just a classi
cation problem
- solution structure has to be constructed in steps
- Many approaches: maximum entropy, neural networks, support vector machines, conditional random fields, MIRA, ...
- Small labeled corpus may be used for parameter tuning of unsupervised aligner [Fraser and Marcu, 2007]

Better Generative Models: Joint Model

$$
p(\mathbf{e}, \mathbf{f})=\sum_{C \in \mathcal{C}} \prod_{\left\langle\bar{e}_{j}, \bar{f}_{j}>\in C\right.} p\left(<\bar{e}_{j}, \bar{f}_{j}>\right)
$$

- Variables:
- \bar{e}_{j} is a phrase in \mathbf{e}
- \bar{f}_{j} is a phrase in \mathbf{f}
- C is a set of $<\bar{e}_{j}, \bar{f}_{j}>$ which cover all words in \mathbf{e} and \mathbf{f}
$-\mathcal{C}$ is all such sets
- Use EM to estimate $p\left(<\bar{e}_{j}, \bar{f}_{j}>\right)$ for all phrases in our corpus

Joint Model

- Advantages:
- Allows phrase-phrase alignments
- Eliminates need for strange parameters like fertility, NULL alignment
- Reduces dependency on distortion
- Disadvantages:
- Complexity explodes - all possible segmentations and their alignments

