
Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Ncode:
an Open Source Bilingual N-gram SMT Toolkit

Josep M. Crego, François Yvon and José B. Mariño
jmcrego@limsi.fr

September 5− 10, 2011 - FBK, Trento (Italy)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Table of contents
Bilingual n-gram approach to SMT

History
Mainstream
Formal device
Main features

Decoding
Search structure
Algorithm
Complexity and speed ups

The Ncode toolkit
Training
Inference
Optimization

Comparison: Ncode vs. Moses

Concluding remarks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Plan

Bilingual n-gram approach to SMT
History
Mainstream
Formal device
Main features

Decoding

The Ncode toolkit

Comparison: Ncode vs. Moses

Concluding remarks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

History

• Phrase-based approach (early 2000)

- state-of-the-art results for many MT tasks

• Bilingual n-gram approach (an alternative to PBMT)

- Derives from the finite-state perspective introduced by
(Casacuberta and Vidal, 2003)

- First implementation dates back to 2004 (Ph.D. at UPC)
- Extended for the last three years (Postdoc at Limsi-CNRS)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

History

• Phrase-based approach (early 2000)

- state-of-the-art results for many MT tasks

• Bilingual n-gram approach (an alternative to PBMT)

- Derives from the finite-state perspective introduced by
(Casacuberta and Vidal, 2003)

- First implementation dates back to 2004 (Ph.D. at UPC)
- Extended for the last three years (Postdoc at Limsi-CNRS)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Standard SMT mainstream

1 take a set of parallel sentences (bitext)
• align each pair (f,e), word for word
• train translation model: the “phrase” table {(f , e)}

2 take a set of monolingual texts
• train statistical target language model

3 make sure to tune your system

4 translate f = argmax
e∈E

{
∑K

k=1 λkFk(e, f)}
5 evaluate

6 not happy ? goto 1

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Underlying formal device: finite-state SMT

• phrase-table lookup [pt] is finite-state

• n-gram models [lm] can be implemented as weighted FSA

• monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm)

• decode with reordering:

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm)

perm(f) is a word lattice (FSA) containing reordering hypotheses

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Underlying formal device: finite-state SMT

• phrase-table lookup [pt] is finite-state

• n-gram models [lm] can be implemented as weighted FSA

• monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm)

• decode with reordering:

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm)

perm(f) is a word lattice (FSA) containing reordering hypotheses

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Underlying formal device: finite-state SMT

• phrase-table lookup [pt] is finite-state

• n-gram models [lm] can be implemented as weighted FSA

• monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm)

• decode with reordering:

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm)

perm(f) is a word lattice (FSA) containing reordering hypotheses

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Bilingual n-grams

• a bilingual n-gram language model as main translation model

- Sequence of tuples (training bitexts):

we want translations perfect
nous voulons des traductions parfaites

• smaller units are more reusable than longer ones (less sparse)

we want translations perfect
nous voulons des traductions parfaites

• translation context introduced via tuple n-grams

p((s, t)k |(s, t)k−1, (s, t)k−2)

multiple back-off schemes, smoothing techniques, etc.

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Bilingual n-grams

• a bilingual n-gram language model as main translation model

- Sequence of tuples (training bitexts):

we want translations perfect
nous voulons des traductions parfaites

• smaller units are more reusable than longer ones (less sparse)

we want translations perfect
nous voulons des traductions parfaites

• translation context introduced via tuple n-grams

p((s, t)k |(s, t)k−1, (s, t)k−2)

multiple back-off schemes, smoothing techniques, etc.

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Bilingual n-grams

• a bilingual n-gram language model as main translation model

- Sequence of tuples (training bitexts):

we want translations perfect
nous voulons des traductions parfaites

• smaller units are more reusable than longer ones (less sparse)

we want translations perfect
nous voulons des traductions parfaites

• translation context introduced via tuple n-grams

p((s, t)k |(s, t)k−1, (s, t)k−2)

multiple back-off schemes, smoothing techniques, etc.

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Tuples from word alignments

parfaites
traductions

des
voulons

nous
we want perfect translations

1 a unique segmentation of each sentence pair:
• no word in a tuple can be aligned to a word outside the tuple
• target-side words in tuples follow the original word order
• no smaller tuples can be found

we want NULL translations perfect
nous voulons des traductions parfaites

2 source-NULLed units are not allowed (complexity issues):
• attach the target word to the previous/next tuple

we want translations perfect
nous voulons des traductions parfaites

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Tuples from word alignments

parfaites
traductions

des
voulons

nous
we want perfect translations

1 a unique segmentation of each sentence pair:
• no word in a tuple can be aligned to a word outside the tuple
• target-side words in tuples follow the original word order
• no smaller tuples can be found

we want NULL translations perfect
nous voulons des traductions parfaites

2 source-NULLed units are not allowed (complexity issues):
• attach the target word to the previous/next tuple

we want translations perfect
nous voulons des traductions parfaites

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Tuples from word alignments

parfaites
traductions

des
voulons

nous
we want perfect translations

1 a unique segmentation of each sentence pair:
• no word in a tuple can be aligned to a word outside the tuple
• target-side words in tuples follow the original word order
• no smaller tuples can be found

we want NULL translations perfect
nous voulons des traductions parfaites

2 source-NULLed units are not allowed (complexity issues):
• attach the target word to the previous/next tuple

we want translations perfect
nous voulons des traductions parfaites

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Coupling reordering and decoding

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm)

• perm is responsible of the NP-completeness of SMT

Problem: Full permutations computationally too expensive (EXP search)

Sol1: Heuristic constraints (distance-based): IBM, ITG, etc.
POLY search, but little correlation with language

Sol2: Linguistically-founded rewrite rules:

- learn reordering rules from the bitext word alignments

perfect translations translations perfect

- compose rules as a reordering transducer: R =©i (ri ∪ Id)
- in decoding: perm(f) = f ◦ R

perm(f) is a word lattice (FSA) with reordering hypotheses

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Coupling reordering and decoding

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm)

• perm is responsible of the NP-completeness of SMT

Problem: Full permutations computationally too expensive (EXP search)

Sol1: Heuristic constraints (distance-based): IBM, ITG, etc.
POLY search, but little correlation with language

Sol2: Linguistically-founded rewrite rules:

- learn reordering rules from the bitext word alignments

perfect translations translations perfect

- compose rules as a reordering transducer: R =©i (ri ∪ Id)
- in decoding: perm(f) = f ◦ R

perm(f) is a word lattice (FSA) with reordering hypotheses

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Coupling reordering and decoding

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm)

• perm is responsible of the NP-completeness of SMT

Problem: Full permutations computationally too expensive (EXP search)

Sol1: Heuristic constraints (distance-based): IBM, ITG, etc.
POLY search, but little correlation with language

Sol2: Linguistically-founded rewrite rules:

- learn reordering rules from the bitext word alignments

perfect translations translations perfect

- compose rules as a reordering transducer: R =©i (ri ∪ Id)
- in decoding: perm(f) = f ◦ R

perm(f) is a word lattice (FSA) with reordering hypotheses

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Coupling reordering and decoding

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm)

• perm is responsible of the NP-completeness of SMT

Problem: Full permutations computationally too expensive (EXP search)

Sol1: Heuristic constraints (distance-based): IBM, ITG, etc.
POLY search, but little correlation with language

Sol2: Linguistically-founded rewrite rules:

- learn reordering rules from the bitext word alignments

perfect translations translations perfect

- compose rules as a reordering transducer: R =©i (ri ∪ Id)
- in decoding: perm(f) = f ◦ R

perm(f) is a word lattice (FSA) with reordering hypotheses

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Plan

Bilingual n-gram approach to SMT

Decoding
Search structure
Algorithm
Complexity and speed ups

The Ncode toolkit

Comparison: Ncode vs. Moses

Concluding remarks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search structure

• Exhaustive search is unfeasible pruning needed!

• Important: which hypotheses are compared to be pruned?

• Solution: use multiple stacks

- Moses: [I] stacks (hyps. generating the same number of words)

+ Problem: Search bias (translate first ’easiest’ segments)
+ Solution: Use future cost estimation (A∗)

Feature cost estimation problem for Ncode

(multiple n-gram LMs without accurate estimations)

- Ncode: [2J] stacks (hyps. translating the same input words)

+ Highly fair comparisons
+ Problem: efficiency problem (2J)
+ Solution: limit reordering (linguistically motivated)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search structure

• Exhaustive search is unfeasible pruning needed!

• Important: which hypotheses are compared to be pruned?

• Solution: use multiple stacks

- Moses: [I] stacks (hyps. generating the same number of words)

+ Problem: Search bias (translate first ’easiest’ segments)
+ Solution: Use future cost estimation (A∗)

Feature cost estimation problem for Ncode

(multiple n-gram LMs without accurate estimations)

- Ncode: [2J] stacks (hyps. translating the same input words)

+ Highly fair comparisons
+ Problem: efficiency problem (2J)
+ Solution: limit reordering (linguistically motivated)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search structure

• Exhaustive search is unfeasible pruning needed!

• Important: which hypotheses are compared to be pruned?

• Solution: use multiple stacks

- Moses: [I] stacks (hyps. generating the same number of words)

+ Problem: Search bias (translate first ’easiest’ segments)
+ Solution: Use future cost estimation (A∗)

Feature cost estimation problem for Ncode

(multiple n-gram LMs without accurate estimations)

- Ncode: [2J] stacks (hyps. translating the same input words)

+ Highly fair comparisons
+ Problem: efficiency problem (2J)
+ Solution: limit reordering (linguistically motivated)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search structure

• Exhaustive search is unfeasible pruning needed!

• Important: which hypotheses are compared to be pruned?

• Solution: use multiple stacks

- Moses: [I] stacks (hyps. generating the same number of words)

+ Problem: Search bias (translate first ’easiest’ segments)
+ Solution: Use future cost estimation (A∗)

Feature cost estimation problem for Ncode

(multiple n-gram LMs without accurate estimations)

- Ncode: [2J] stacks (hyps. translating the same input words)

+ Highly fair comparisons
+ Problem: efficiency problem (2J)
+ Solution: limit reordering (linguistically motivated)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search structure

• Exhaustive search is unfeasible pruning needed!

• Important: which hypotheses are compared to be pruned?

• Solution: use multiple stacks

- Moses: [I] stacks (hyps. generating the same number of words)

+ Problem: Search bias (translate first ’easiest’ segments)
+ Solution: Use future cost estimation (A∗)

Feature cost estimation problem for Ncode

(multiple n-gram LMs without accurate estimations)

- Ncode: [2J] stacks (hyps. translating the same input words)

+ Highly fair comparisons
+ Problem: efficiency problem (2J)
+ Solution: limit reordering (linguistically motivated)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search algorithm (sketched)

• Word lattice encoding permutations (up to 2J nodes)

• Partial translation hypotheses (up to 2J stacks)

nous voulons

des

traductions

parfaites

parfaites

des

traductions

- word lattice G as input of the search algorithm

- nodes of the input lattice are transformed into search stacks after being
topologically sorted

- search starts setting the empty hypothesis in stack (0J)

- it proceeds expanding hypotheses in the stacks following the topological sort

- Translation output through tracing back the best hypothesis of the ending stacks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search algorithm (sketched)

• Word lattice encoding permutations (up to 2J nodes)

• Partial translation hypotheses (up to 2J stacks)

1 2 3

4

5

6

7

8
nous voulons

des

traductions

parfaites

parfaites

des

traductions

- word lattice G as input of the search algorithm

- nodes of the input lattice are transformed into search stacks after being
topologically sorted

- search starts setting the empty hypothesis in stack (0J)

- it proceeds expanding hypotheses in the stacks following the topological sort

- Translation output through tracing back the best hypothesis of the ending stacks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search algorithm (sketched)

• Word lattice encoding permutations (up to 2J nodes)

• Partial translation hypotheses (up to 2J stacks)

1 2 3

4

5

6

7

8

Ø

nous voulons

des

traductions

parfaites

parfaites

des

traductions

- word lattice G as input of the search algorithm

- nodes of the input lattice are transformed into search stacks after being
topologically sorted

- search starts setting the empty hypothesis in stack (0J)

- it proceeds expanding hypotheses in the stacks following the topological sort

- Translation output through tracing back the best hypothesis of the ending stacks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search algorithm (sketched)

• Word lattice encoding permutations (up to 2J nodes)

• Partial translation hypotheses (up to 2J stacks)

Ø nous|we voulons|want

parfaites|perfect

des|NULL traductions|translations

des|NULL

parfaites|perfect

traductions|translations

1 2 3

4

5

6

7

8

- word lattice G as input of the search algorithm

- nodes of the input lattice are transformed into search stacks after being
topologically sorted

- search starts setting the empty hypothesis in stack (0J)

- it proceeds expanding hypotheses in the stacks following the topological sort

- Translation output through tracing back the best hypothesis of the ending stacks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search algorithm (sketched)

• Word lattice encoding permutations (up to 2J nodes)

• Partial translation hypotheses (up to 2J stacks)

Ø nous|we voulons|want

parfaites|perfect

des|NULL traductions|translations

des|NULL

parfaites|perfect

traductions|translations

1 2 3

4

5

6

7

8

- word lattice G as input of the search algorithm

- nodes of the input lattice are transformed into search stacks after being
topologically sorted

- search starts setting the empty hypothesis in stack (0J)

- it proceeds expanding hypotheses in the stacks following the topological sort

- Translation output through tracing back the best hypothesis of the ending stacks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search complexity and speed ups

• Complexity: upper bound of the number of hypotheses valued
for an exhaustive search:

2J × (|Vu|n1−1 × |Vt |n2−1)

- J is the length of the input sentence,
- |Vu| is the size of the vocabulary of translation units,
- |Vt | is the size of the target vocabulary.
- n1/n2 are the order of the bilingual/target n-gram LMs,

• Speed ups:

- Recombination: exact (unless N-best output required)
- i-best hypotheses within a stack (beam pruning)
- i-best translation choices (based on uncontextualized scores)
- prune reordering rules (reduce the size of the input lattice)
- use several threads (when possible)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Search complexity and speed ups

• Complexity: upper bound of the number of hypotheses valued
for an exhaustive search:

2J × (|Vu|n1−1 × |Vt |n2−1)

- J is the length of the input sentence,
- |Vu| is the size of the vocabulary of translation units,
- |Vt | is the size of the target vocabulary.
- n1/n2 are the order of the bilingual/target n-gram LMs,

• Speed ups:

- Recombination: exact (unless N-best output required)
- i-best hypotheses within a stack (beam pruning)
- i-best translation choices (based on uncontextualized scores)
- prune reordering rules (reduce the size of the input lattice)
- use several threads (when possible)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Plan

Bilingual n-gram approach to SMT

Decoding

The Ncode toolkit
Training
Inference
Optimization

Comparison: Ncode vs. Moses

Concluding remarks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

training.perl [--first-step --last-step --output-dir]

- Ncode systems are built from a training bitext (f,e) and the corresponding word alignment (A).
Part-of-speeches (f.pos) are (typically) used to learn rewrite rules

- Target n-gram LMs are not estimated within training.perl

- Training is deployed over 8 steps

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

we nous 0.33
want voulons 0.221
NULL des 0.15
translations traductions 0.66
perfect parfaites 0.445
...

nous we 0.26
voulons want 0.122
des NULL 0.25
traductions traductions 0.556
parfaites perfect 0.35
...

Step 0: lexicon distribution

- Distributions computed based on counts using word alignments:

Plex (e, f) =
count(f ,e)∑
f ′ count(f ′,e)

; Plex (f , e) =
count(f ,e)∑
e′ count(f ,e′)

- NULL tokens are considered (to allow tuples with NULL target side)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

unfoldNULL

we ||| nous ||| PP ||| 1
want ||| voulons ||| VBP ||| 2
NULL ||| des ||| NULL ||| -1
translations ||| traductions ||| NNS ||| 4
perfect ||| parfaites ||| JJ ||| 3
EOS
...

Step 1: tuple extraction

- Unfold technique previously outlined:

Minimal segmentation of source/target training sentences, following alignments and allowing source distortion

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

unfoldNULL unfold

we ||| nous
want ||| voulons
translations ||| des traductions
perfect ||| parfaites
EOS
...

Step 2: tuple refinement (src-NULLed units)

- Source-NULLed words (NULL|||des) are attached to the previous or the next unit, after evaluating the
likelihood of both alternatives using the unit lexicon distribution Plw (e, f) (next slide):

max

 Plw (want|||voulons des) x Plw (translations|||traductions) ′attachment : previous′

or
Plw (want|||voulons) x Plw (translations|||des traductions) ′attachment : next′

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

unfoldNULL unfold

unfold.maxs5.maxf4.tnb30.voc

we ||| nous
want ||| voulons
translations ||| des traductions
perfect ||| parfaites
...

4.20843 1.68909 0 2.1972
0.69897 0.778151 0.69314 1.3862
1.57978 0.778151 0.69314 2.708021
3.11081 1.56495 0 2.7080
...

.lex1.lex2.rfreq1.rfreq2

Step 3: tuple pruning & uncontextualized distributions [--max-tuple-length --max-tuple-fert --tuple-nbest]

- Tuples filtered following several constraints (length, fertility, n-best translation choices per source segment)

- Conditional probability (x2): Prf (e, f) =
count(f ,e)∑
f ′ count(f ′,e)

; Prf (f , e) =
count(f ,e)∑
e′ count(f ,e′)

- Lexicon weights (x2):

Plw (e, f) = 1
(J+1)I

∏I
i=1

∑J
j=0 Plex (e, f) ; Plw (f , e) = 1

(I+1)J

∏J
j=1

∑I
i=0 Plex (f , e)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

unfoldNULL unfold

unfold.maxs5.maxf4.tnb30.voc .lex1.lex2.rfreq1.rfreq2

unfold.maxs5.maxf4.tnb30.voc.stag-ttag.bmoptions.lm.mmap

KenLM format

Step 4: bilingual n-gram lm [--train-src-bm --train-trg-bm --options-bm --name-src-bm --name-trg-bm]

- Standard n-gram LM (units built from words):

p(f J1 , e
I
1) =

∏K
k=1 p((f , e)k |(f , e)k−1, . . . , (f , e)k−n+1)

- Options passed to SriLM, Ex: –options-bm -order 3 -unk -gt3min 1 -kndiscount -interpolate

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

unfoldNULL unfold

unfold.maxs5.maxf4.tnb30.voc .lex1.lex2.rfreq1.rfreq2

unfold.maxs5.maxf4.tnb30.voc.stag-ttag.bmoptions.lm.mmap

KenLM format

Step 4: bilingual n-gram lm [--train-src-bm --train-trg-bm --options-bm --name-src-bm --name-trg-bm]

- Bilingual units built from: POS-tags, lemmas, etc., or any src/trg combination. Ex:

(f , e)wrd : ′translations|||traductions′

(f , e)lem : ′translation|||traduction′
(f , e)pos : ′NNS|||Noun′

(f , e)lem:pos : ′translation|||Noun′

- Each unit (--train-src --train-trg) is assign to one token (--train-src-bm --train-trg-bm)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

unfoldNULL unfold

unfold.maxs5.maxf4.tnb30.voc ...lex1.lex2.rfreq1.rfreq2

unfold.maxs5.maxf4.tnb30.voc.stag-ttag.bmoptions.lm.mmap

posrules.max10.smooth..

NNS JJ /// 1 0 /// 1.59785
JJ JJ NNS /// 1 2 0 /// 0.79786
...

Step 5: rewrite rules (POS-based) [--max-rule-length --max-rule-cost]

- Rewrite rules are automatically learned from the bitext word alignments

- POS tags are used to gain generalization power

- Rules are filtered according to: P(f f r) =
count(f ,f r)∑

f ′∈perm(f)
count(f ,f ′)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

unfoldNULL unfold

unfold.maxs5.maxf4.tnb30.voc ...lex1.lex2.rfreq1.rfreq2

unfold.maxs5.maxf4.tnb30.voc.stag-ttag.bmoptions.lm.mmap

posrules.max10.smooth..

unfold.maxs5.maxf4.tnb30.voc.msdcfb

0.1625 2.9957 2.3025 0.1053 2.9957 2.9957
0.4700 2.0794 1.3862 0.2876 2.0794 2.0794
0.7985 2.9957 0.6931 0.6931 0.7985 2.9957
...

Step 6: lexicalized reordering

- Four orientation types: (m)onotone order; (s)wap with previous tuple; (f)orward jump; (b)ackward jump.
And two aggregated types: (d)iscontinuous: (b) and (f); and (c)ontinuous: (m) and (s)

- Smoothed maximum likelihood estimator, σ = 1/
∑

o count(o, f , e):

P(orientation|f , e) =
(σ/4)+count(orientation,f ,e)

σ+
∑

o count(o,f ,e)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Model estimation

training.perl

f e A

f.pos

f.lem e.lem

lex.f2n lex.n2f

unfoldNULL unfold

unfold.maxs5.maxf4.tnb30.voc ...lex1.lex2.rfreq1.rfreq2

unfold.maxs5.maxf4.tnb30.voc.stag-ttag.bmoptions.lm.mmap

posrules.max10.smooth..

unfold.maxs5.maxf4.tnb30.voc.msdcfb

unfold.maxs5.maxf4.tnb30.voc.stag.smoptions.lm.mmap

KenLM format

Step 7: source (unfolded) n-gram lm [--train-src-unf --options-sm --name-src-unf]

- n-gram LM estimated over reordered training source words (lemmas, POS, etc.)

- Reordering introduced in the tuple extraction process. Ex: ’we want translations perfect’

- Options passed to SriLM, Ex: –options-sm -order 5 -unk -kndiscount -interpolate

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Inference

binrules

f f.pos

unfold.maxs5.maxf4.tnb30.voc ...lex1.lex2.rfreq1.rfreq2

unfold.maxs5.maxf4.tnb30.voc.stag-ttag.bmoptions.lm.mmap

posrules.max10.smooth..

unfold.maxs5.maxf4.tnb30.voc.msdcfb

unfold.maxs5.maxf4.tnb30.voc.stag.smoptions.lm.mmap

0 1 <s>
1 2 we@1
2 3 want@2
3 4 perfect@3
3 7 translations@4
4 5 translations@4
5 6 </s>
6
7 5 perfect@3
EOS
...

f.rules

binrules [-wrd s -tag s -rrules s -maxr i -maxc f]

- Rules extracted from reorderings introduced in the tuple extraction

translations perfect perfect translations

- Referred to source-side tokens (words, POS, etc.): NNS JJ JJ NNS

- Filter rules (discard noisy alignments) maxr=10 (size) maxc=4 (cost, -logP)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Inference

unfold.maxs5.maxf4.tnb30.voc ...lex1.lex2.rfreq1.rfreq2

unfold.maxs5.maxf4.tnb30.voc.stag-ttag.bmoptions.lm.mmap

posrules.max10.smooth..

unfold.maxs5.maxf4.tnb30.voc.msdcfb

unfold.maxs5.maxf4.tnb30.voc.stag.smoptions.lm.mmap

0 1 <s>
1 2 we@1
2 3 want@2
3 4 perfect@3
3 7 translations@4
4 5 translations@4
5 6 </s>
6
7 5 perfect@3
EOS
...

binfiltr

srcTunit ||| trgTunit ||| Scores ||| lexReordering ||| bilFactors ||| trgFactors ||| srcFactors
we@1 ||| nous ||| 0.3 0.6 1.3 0.5 ||| 0.1 5.0 1.8 0.1 1.1 4.4 ||| 483 267 ||| nous ||| we
...

f f.posf.rules

f.rules+filt

binfiltr [-tunits s -scores s -lexrm s -bilfactor s -srcfactor s -trgfactor s -maxs i]

- Collect useful information for given test sentences

- Filter tuples (discard noisy alignments) maxs=6 (size)

- Bilingual/source/target factors used with bilingual/source/target n-gram LMs

- Multiple LM’s referred to multiple factors can be used

- Sentence-based LM’s also available

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Inference

unfold.maxs5.maxf4.tnb30.voc ...lex1.lex2.rfreq1.rfreq2

unfold.maxs5.maxf4.tnb30.voc.stag-ttag.bmoptions.lm.mmap

posrules.max10.smooth..

unfold.maxs5.maxf4.tnb30.voc.msdcfb

unfold.maxs5.maxf4.tnb30.voc.stag.smoptions.lm.mmap

bincoder

out

nous voulons des traductions parfaites

out.UNITS
out.GRAPH

out.NBEST

f f.pos

0 1 <s>
1 2 we@1
2 3 want@2
3 4 perfect@3
3 7 translations@4
4 5 translations@4
5 6 </s>
6
7 5 perfect@3
EOS
...

srcTunit ||| trgTunit ||| Scores ||| lexReordering ||| bilFactors ||| trgFactors ||| srcFactors
we@1 ||| nous ||| 0.3 0.6 1.3 0.5 ||| 0.1 5.0 1.8 0.1 1.1 4.4 ||| 483 267 ||| nous ||| we
...

f.rules

f.rules+filt

bincoder (weights) (files) (search settings)

- Model weights

- Files: (input) language models, filtered input (output) 1-best target word/translation unit hypotheses,
Search graph, N-best hypotheses (OpenFST)

- Search settings: beam size, translation choices, input (OOV) words strategy, threads, etc.

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Optimization (MERT)

mert-run.perl

f.rules+filt

(MERT Moses)

Models

λ1 , λ2 , ... , λk

mert-run.perl

- A wrapper for the MERT software made available in the Moses toolkit (... soon also ZMERT)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Optimization (MERT)

mert-run.perl
(MERT Moses)

Models

mert-tst.perl
(Ncode)

λ1 , λ2 , ... , λk

out

f.rules+filt f.rules+filt

mert-tst.perl

- Translates a given input file using the optimized model weights

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Plan

Bilingual n-gram approach to SMT

Decoding

The Ncode toolkit

Comparison: Ncode vs. Moses

Concluding remarks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Experimental framework

• French-to-German (2) tasks:

news : News Commentary corpus (6th Workshop on SMT, WMT11)
full : Additional data (up to 4 million sentence pairs)

• Tune: newstest2010, Test: newstest2009, newstest2011

• Same alignment (Giza++), target LM (SriLM)

• Ncode employs TreeTagger POS tags (rewrite rules)

• default Moses settings: 14 features

• default Ncode settings: 14 + 2 features:

- Bilingual n-gram over tuples built from words
- Bilingual n-gram over tuples built from POS tags

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Performance results
BLEU : Translation accuracy

#units : Number of phrases/tuples (millions) after training (limited to 6 tokens)

Memory : Memory (Mb) used by each decoder

Speed : Decoding speed (Words/second) (single-threaded translations)

System Task
BLEU

#units Memory Speed
newstest2009 newstest2011

Ncode
news 13.89 13.83 0.5 7.7 54.4
full 15.09 15.26 7.5 9 33.9

Moses
news 13.70 13.51 7.5 7.9 23.1
full 14.66 14.51 141 16 14.7

• Slightly higher accuracy results for Ncode (within the confidence margin)

• Ncode outperforms Moses in data efficiency:

- smaller set of tuples than phrases (full: 20 times smaller)
- lower memory needs for Ncode (full: ∼ half than Moses)

• Nearly twice faster (search pruning settings are not tested)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Performance results
BLEU : Translation accuracy

#units : Number of phrases/tuples (millions) after training (limited to 6 tokens)

Memory : Memory (Mb) used by each decoder

Speed : Decoding speed (Words/second) (single-threaded translations)

System Task
BLEU

#units Memory Speed
newstest2009 newstest2011

Ncode
news 13.89 13.83 0.5 7.7 54.4
full 15.09 15.26 7.5 9 33.9

Moses
news 13.70 13.51 7.5 7.9 23.1
full 14.66 14.51 141 16 14.7

• Slightly higher accuracy results for Ncode (within the confidence margin)

• Ncode outperforms Moses in data efficiency:

- smaller set of tuples than phrases (full: 20 times smaller)
- lower memory needs for Ncode (full: ∼ half than Moses)

• Nearly twice faster (search pruning settings are not tested)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Performance results
BLEU : Translation accuracy

#units : Number of phrases/tuples (millions) after training (limited to 6 tokens)

Memory : Memory (Mb) used by each decoder

Speed : Decoding speed (Words/second) (single-threaded translations)

System Task
BLEU

#units Memory Speed
newstest2009 newstest2011

Ncode
news 13.89 13.83 0.5 7.7 54.4
full 15.09 15.26 7.5 9 33.9

Moses
news 13.70 13.51 7.5 7.9 23.1
full 14.66 14.51 141 16 14.7

• Slightly higher accuracy results for Ncode (within the confidence margin)

• Ncode outperforms Moses in data efficiency:

- smaller set of tuples than phrases (full: 20 times smaller)
- lower memory needs for Ncode (full: ∼ half than Moses)

• Nearly twice faster (search pruning settings are not tested)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Performance results
BLEU : Translation accuracy

#units : Number of phrases/tuples (millions) after training (limited to 6 tokens)

Memory : Memory (Mb) used by each decoder

Speed : Decoding speed (Words/second) (single-threaded translations)

System Task
BLEU

#units Memory Speed
newstest2009 newstest2011

Ncode
news 13.89 13.83 0.5 7.7 54.4
full 15.09 15.26 7.5 9 33.9

Moses
news 13.70 13.51 7.5 7.9 23.1
full 14.66 14.51 141 16 14.7

• Slightly higher accuracy results for Ncode (within the confidence margin)

• Ncode outperforms Moses in data efficiency:

- smaller set of tuples than phrases (full: 20 times smaller)
- lower memory needs for Ncode (full: ∼ half than Moses)

• Nearly twice faster (search pruning settings are not tested)

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Plan

Bilingual n-gram approach to SMT

Decoding

The Ncode toolkit

Comparison: Ncode vs. Moses

Concluding remarks

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Concluding remarks

• Developed to run on Linux systems

• Written in Perl and C++

• Prerequisites

- to compile: kenlm and OpenFst libraries
- to run: SriLM and the MERT implementation in Moses

• Multithreaded

• (Multiple) src/trg/bil n-gram LM’s handled by kenlm

• Factored src/trg/bil n-gram LM’s

• Under development:

- Client/server architecture
- Optimization by ZMERT
- Sentence-based bonus models

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Concluding remarks

• Developed to run on Linux systems

• Written in Perl and C++

• Prerequisites

- to compile: kenlm and OpenFst libraries
- to run: SriLM and the MERT implementation in Moses

• Multithreaded

• (Multiple) src/trg/bil n-gram LM’s handled by kenlm

• Factored src/trg/bil n-gram LM’s

• Under development:

- Client/server architecture
- Optimization by ZMERT
- Sentence-based bonus models

Bilingual n-gram approach to SMT Decoding The Ncode toolkit Comparison: Ncode vs. Moses Concluding remarks

Concluding remarks

• Developed to run on Linux systems

• Written in Perl and C++

• Prerequisites

- to compile: kenlm and OpenFst libraries
- to run: SriLM and the MERT implementation in Moses

• Multithreaded

• (Multiple) src/trg/bil n-gram LM’s handled by kenlm

• Factored src/trg/bil n-gram LM’s

• Under development:

- Client/server architecture
- Optimization by ZMERT
- Sentence-based bonus models

Thanks

Ncode is freely available at http://ncode.limsi.fr/
(http://www.limsi.fr/Individu/jmcrego/bincoder/)

Adrià de Gispert, Patrik Lambert, Marta Ruiz, Alexandre Allauzen, Aurélien Max,
Thomas Lavergne and Artem Sokolov also contributed to create the toolkit.

crego@systran.fr

now at

	Bilingual n-gram approach to SMT
	History
	Mainstream
	Formal device
	Main features

	Decoding
	Search structure
	Algorithm
	Complexity and speed ups

	The Ncode toolkit
	Training
	Inference
	Optimization

	Comparison: Ncode vs. Moses
	Concluding remarks
	

