Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

NCODE: an Open Source Bilingual N-gram SMT Toolkit

Josep M. Crego, François Yvon and José B. Mariño jmcrego@limsi.fr

September 5 - 10, 2011 - FBK, Trento (Italy)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

Table of contents

Bilingual *n*-gram approach to SMT

History Mainstream Formal device Main features

Decoding

- Search structure Algorithm
- Complexity and speed ups

The NCODE toolkit

Training Inference Optimization

Comparison: NCODE vs. MOSES Concluding remarks

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

Plan

Bilingual *n*-gram approach to SMT History Mainstream Formal device Main features

Decoding

The NCODE toolkit

Comparison: NCODE vs. MOSES

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs. Moses	Concluding remarks
•	0	0			
0	0	0			
0	0	0			
000					

History

- Phrase-based approach (early 2000)
 - state-of-the-art results for many MT tasks

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
•	0	0		
0	0	0		
0	0	0		
000				

History

- Phrase-based approach (early 2000)
 - state-of-the-art results for many MT tasks
- Bilingual *n*-gram approach (an alternative to PBMT)
 - Derives from the finite-state perspective introduced by (Casacuberta and Vidal, 2003)
 - First implementation dates back to 2004 (Ph.D. at UPC)
 - Extended for the last three years (Postdoc at Limsi-CNRS)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs. $% \left({{\left({{{\left({{{\left({{{\left({{{\left({{{}}}} \right)}} \right)_{i}}} \right)_{i}}} \right)}_{i}} \right)}} \right)$	Moses	Concluding remarks
0	0	0				
•	0	0				
0	0	0				
000						

Standard SMT mainstream

- 1 take a set of parallel sentences (*bitext*)
 - align each pair (f, e), word for word
 - train translation model: the "phrase" table $\{(f, e)\}$
- 2 take a set of monolingual texts
 - train statistical target language model
- 3 make sure to tune your system
- 4 translate $\mathbf{f} = \underset{\mathbf{e} \in E}{\operatorname{argmax}} \{\sum_{k=1}^{K} \lambda_k F_k(\mathbf{e}, \mathbf{f})\}$
- 5 evaluate
- 6 not happy ? goto 1

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
•	0	0				
000						

Underlying formal device: finite-state SMT

- phrase-table lookup [pt] is finite-state
- n-gram models [Im] can be implemented as weighted FSA

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
•	0	0		
000				

Underlying formal device: finite-state SMT

- phrase-table lookup [pt] is finite-state
- n-gram models [Im] can be implemented as weighted FSA
- monotonic decode of f:

 $\mathbf{e}^* = bestpath(\pi_2(\mathbf{f} \circ pt) \circ lm)$

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
•	0	0				
000						

Underlying formal device: finite-state SMT

- phrase-table lookup [pt] is finite-state
- n-gram models [Im] can be implemented as weighted FSA
- monotonic decode of f:

 $\mathbf{e}^* = bestpath(\pi_2(\mathbf{f} \circ pt) \circ lm)$

• decode with reordering:

 $\mathbf{e}^* = bestpath(\pi_2(\mathbf{perm}(\mathbf{f}) \circ pt) \circ lm)$

perm(f) is a word lattice (FSA) containing reordering hypotheses

Bilingual *n*-grams

- a **bilingual** *n*-gram language model as main translation model
 - Sequence of tuples (training bitexts):

we	want	translations	perfect
nous	voulons	des traductions	parfaites

Bilingual *n*-grams

- a bilingual *n*-gram language model as main translation model
 - Sequence of tuples (training bitexts):

we	want	translations	perfect
nous	voulons	des traductions	parfaites

• smaller units are more reusable than longer ones (less sparse)

we want	translations	perfect	
nous voulons	des traductions	parfaites	

Bilingual *n*-grams

- a **bilingual** *n*-gram language model as main translation model
 - Sequence of tuples (training bitexts):

we	want	translations	perfect
nous	voulons	des traductions	parfaites

• smaller units are more reusable than longer ones (less sparse)

we want	translations	perfect
nous voulons	des traductions	parfaites

translation context introduced via tuple n-grams

 $p((s,t)_k|(s,t)_{k-1},(s,t)_{k-2})$

multiple back-off schemes, smoothing techniques, etc.

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

Tuples from word alignments

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs. $% \left({{\left({{\left({{\left({{\left({{\left({{\left({{\left($	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

Tuples from word alignments

- 1 a **unique** segmentation of each sentence pair:
 - no word in a tuple can be aligned to a word outside the tuple
 - target-side words in tuples follow the original word order
 - no smaller tuples can be found

we	want	NULL	translations	perfect
nous	voulons	des	traductions	parfaites

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs. $% \left({{\left({{\left({{\left({{\left({{\left({{\left({{\left($	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

Tuples from word alignments

- 1 a **unique** segmentation of each sentence pair:
 - no word in a tuple can be aligned to a word outside the tuple
 - target-side words in tuples follow the original word order
 - no smaller tuples can be found

I	we	want	NULL	translations	perfect
	nous	voulons	des	traductions	parfaites

- 2 source-NULLed units are not allowed (complexity issues):
 - attach the target word to the $\ensuremath{\textit{previous}}/\ensuremath{\textit{next}}$ tuple

we	want	translations	perfect
nous	voulons	des traductions	parfaites

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

 $\mathbf{e}^* = bestpath(\pi_2(\mathbf{perm}(\mathbf{f}) \circ pt) \circ lm)$

• perm is responsible of the NP-completeness of SMT

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

 $\mathbf{e}^* = bestpath(\pi_2(\mathbf{perm}(\mathbf{f}) \circ pt) \circ lm)$

• perm is responsible of the NP-completeness of SMT

Problem: Full permutations computationally too expensive (EXP search)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

 $\mathbf{e}^* = bestpath(\pi_2(\mathbf{perm}(\mathbf{f}) \circ pt) \circ lm)$

- perm is responsible of the NP-completeness of SMT
- Problem: Full permutations computationally too expensive (EXP search) Sol1: Heuristic constraints (distance-based): IBM, ITG, *etc.* POLY search, but little correlation with language

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

 $\mathbf{e}^* = bestpath(\pi_2(\mathbf{perm}(\mathbf{f}) \circ pt) \circ lm)$

• perm is responsible of the NP-completeness of SMT

Problem: Full permutations computationally too expensive (EXP search) Sol1: Heuristic constraints (distance-based): IBM, ITG, *etc.* POLY search, but little correlation with language

- Sol2: Linguistically-founded rewrite rules:
 - learn $\ensuremath{\textit{reordering rules}}$ from the bitext word alignments

perfect translations \rightsquigarrow translations perfect

- compose rules as a reordering transducer: $R = \bigcirc_i (r_i \cup Id)$
- in decoding: $perm(\mathbf{f}) = \mathbf{f} \circ R$

perm(**f**) is a word lattice (FSA) with reordering hypotheses

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs. $% \left({{\left({{{\left({{{\left({{{\left({{{\left({{{}}}} \right)}} \right)_{i}}} \right)_{i}}} \right)}_{i}}} \right)_{i}} \right)$	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

Bilingual *n*-gram approach to SMT

Decoding Search structure Algorithm Complexity and speed ups

The NCODE toolkit

Comparison: NCODE vs. MOSES

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	•	0		
0	0	0		
0	0	0		
000				

• Exhaustive search is *unfeasible* ~> pruning needed!

- Exhaustive search is *unfeasible* ~> pruning needed!
- Important: which hypotheses are compared to be pruned?

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	•	0		
0	0	0		
0	0	0		
000				

- Exhaustive search is *unfeasible* ~> pruning needed!
- Important: which hypotheses are compared to be pruned?
- Solution: use multiple stacks
- MOSES: [*I*] stacks (hyps. generating the same number of words)
 + Problem: Search bias (translate first 'easiest' segments)
 - + Solution: Use future cost estimation (A^*)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs. MOSES	Concluding remarks
0	•	0			
0	0	0			
0	0	0			
000					

- Exhaustive search is *unfeasible* ~> pruning needed!
- Important: which hypotheses are compared to be pruned?
- Solution: use multiple stacks
- MOSES: [/] stacks (hyps. generating the **same number** of words)
 - + Problem: Search bias (translate first 'easiest' segments)
 - + Solution: Use future cost estimation (A^*)

Feature cost estimation problem for NCODE (multiple *n*-gram LMs without accurate estimations)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOS	SES Concluding remarks
0	•	0		
0	0	0		
0	0	0		
000				

- Exhaustive search is *unfeasible* ~> pruning needed!
- Important: which hypotheses are compared to be pruned?
- Solution: use multiple stacks
- MOSES : [/] stacks (hyps. generating the same number of words)
 - + Problem: Search bias (translate first 'easiest' segments)
 - + Solution: Use future cost estimation (A^*)

Feature cost estimation problem for NCODE

(multiple *n*-gram LMs without accurate estimations)

- NCODE: $[2^{J}]$ stacks (hyps. translating the same input words)
 - + Highly fair comparisons
 - + Problem: efficiency problem (2^J)
 - + Solution: limit reordering (linguistically motivated)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	•	0		
0	0	0		
000				

• Word lattice encoding permutations (up to 2^{*J*} nodes)

- word lattice G as input of the search algorithm

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	•	0		
0	0	0		
000				

- Word lattice encoding permutations (up to 2^{*J*} nodes)
- Partial translation hypotheses (up to 2^J stacks)

- word lattice G as input of the search algorithm
- nodes of the input lattice are transformed into search stacks after being topologically sorted

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	•	0		
0	0	0		
000				

- Word lattice encoding permutations (up to 2^{*J*} nodes)
- Partial translation hypotheses (up to 2^J stacks)

- word lattice G as input of the search algorithm
- nodes of the input lattice are transformed into search stacks after being topologically sorted
- search starts setting the empty hypothesis in stack (0^{J})

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	•	0		
0	0	0		
000				

- Word lattice encoding permutations (up to 2^{*J*} nodes)
- Partial translation hypotheses (up to 2^J stacks)

- word lattice G as input of the search algorithm
- nodes of the input lattice are transformed into search stacks after being topologically sorted
- search starts setting the empty hypothesis in stack (0^J)
- it proceeds expanding hypotheses in the stacks following the topological sort

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	•	0		
0	0	0		
000				

- Word lattice encoding permutations (up to 2^{*J*} nodes)
- Partial translation hypotheses (up to 2^J stacks)

- word lattice G as input of the search algorithm
- nodes of the input lattice are transformed into search stacks after being topologically sorted
- search starts setting the empty hypothesis in stack (0^{J})
- it proceeds expanding hypotheses in the stacks following the topological sort
- Translation output through tracing back the best hypothesis of the ending stacks

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	•	0				
000						

Search complexity and speed ups

• Complexity: upper bound of the number of hypotheses valued for an exhaustive search:

$$2^J \times (|V_u|^{n_1-1} \times |V_t|^{n_2-1})$$

- J is the length of the input sentence,
- $|V_u|$ is the size of the vocabulary of translation units,
- $|V_t|$ is the size of the target vocabulary.
- n_1/n_2 are the order of the bilingual/target *n*-gram LMs,

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	•	0				
000						

Search complexity and speed ups

• Complexity: upper bound of the number of hypotheses valued for an exhaustive search:

$$2^J \times (|V_u|^{n_1-1} \times |V_t|^{n_2-1})$$

- J is the length of the input sentence,
- $|V_u|$ is the size of the vocabulary of translation units,
- $|V_t|$ is the size of the target vocabulary.
- n_1/n_2 are the order of the bilingual/target *n*-gram LMs,
- Speed ups:
 - Recombination: exact (unless N-best output required)
 - *i*-best hypotheses within a stack (beam pruning)
 - *i*-best translation choices (based on uncontextualized scores)
 - prune reordering rules (reduce the size of the input lattice)
 - use several threads (when possible)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. N	foses Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

Plan

Bilingual *n*-gram approach to SMT

Decoding

The NCODE toolkit

Training Inference Optimization

Comparison: NCODE vs. MOSES

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs. $% \left({{\left({{\left({{\left({{\left({{\left({{\left({{\left($	Moses	Concluding remarks
0	0	•				
0	0	0				
0	0	0				
000						

Model estimation

training.perl [--first-step --last-step --output-dir]

- NCODE systems are built from a training bitext (f,e) and the corresponding word alignment (A).
 Part-of-speeches (f.pos) are (typically) used to learn rewrite rules
- Target n-gram LMs are not estimated within training.perl
- Training is deployed over 8 steps

Bilingual	<i>n</i> -gram	approach	to	SMT	Decodir
0					0
0					0
0					0
000					

d	in	g	The	ľ
			•	
			0	

he NCODE toolkit

t Comparison: NCODE vs. MOSES Concluding r

Model estimation

Step 0: lexicon distribution

- Distributions computed based on counts using word alignments:

$$P_{lex}(e, f) = \frac{count(f, e)}{\sum_{f'} count(f', e)}$$
; $P_{lex}(f, e) = \frac{count(f, e)}{\sum_{e'} count(f, e')}$

- NULL tokens are considered (to allow tuples with NULL target side)

Bilingual	n-gram	approach	to	SMT	Decodi
0					0
0					0
0					0
000					

ding	The 1
	•
	0

e NCODE toolkit 🦳 🖯

it Comparison: NCODE vs. MOSES Concluding remarks

Model estimation

Step 1: tuple extraction

- Unfold technique previously outlined:

Minimal segmentation of source/target training sentences, following alignments and allowing source distortion

Bilingual	<i>n</i> -gram	approach	to	SMT	Decoding
0					0
0					0
0					0
000					

ling	I he
	•
	0
	0

Model estimation

Step 2: tuple refinement (src-NULLed units)

 Source-NULLed words (NULL|||des) are attached to the previous or the next unit, after evaluating the likelihood of both alternatives using the unit lexicon distribution P_{low}(e, f) (next slide):

 $\max \left\{ \begin{array}{l} P_{lw}\left(want|||voulons \, {\rm des}\right) \times P_{lw}\left(translations|||traductions\right) \ ' \, {\rm attachment} : \, {\rm previous'} \\ or \\ P_{lw}\left(want|||voulons\right) \times P_{lw}\left(translations|||{\rm des} \, {\rm traductions}\right) \ ' \, {\rm attachment} : \, {\rm next'} \end{array} \right.$

Bilingual	n-gram	approach	to	SMT	Decodi
0					
0					0
0					0
000					

ecoding	Th
	•
	0

he NCODE toolkit

it Comparison: NCODE vs. MOSES Concluding remar

Model estimation

Step 3: tuple pruning & uncontextualized distributions [--max-tuple-length --max-tuple-fert --tuple-nbest]

- Tuples filtered following several constraints (length, fertility, n-best translation choices per source segment)
- Conditional probability (x2): $P_{rf}(e, f) = \frac{count(f, e)}{\sum_{f'} count(f', e)}$; $P_{rf}(f, e) = \frac{count(f, e)}{\sum_{e'} count(f, e')}$
- Lexicon weights (x2):

 $P_{lw}(e,f) = \frac{1}{(J+1)^l} \prod_{i=1}^l \sum_{j=0}^J P_{lex}(e,f) \quad ; \quad P_{lw}(f,e) = \frac{1}{(l+1)^J} \prod_{j=1}^J \sum_{i=0}^l P_{lex}(f,e)$

Bilingual	<i>n</i> -gram	approach	to	SMT	Decodir
0					0
0					0
0					0
000					

Model estimation

Step 4: bilingual n-gram Im [--train-src-bm --train-trg-bm --options-bm --name-src-bm --name-trg-bm]

- Standard n-gram LM (units built from words):

$$p(f_1^J, e_1^I) = \prod_{k=1}^K p((f, e)_k | (f, e)_{k-1}, \dots, (f, e)_{k-n+1})$$

Options passed to SRILM, Ex: -options-bm -order_3_-unk_-gt3min_1_-kndiscount_-interpolate

Bilingual	<i>n</i> -gram	approach	to	SMT	Decodir
0					0
0					0
0					0
000					

Model estimation

Step 4: bilingual n-gram lm [--train-src-bm --train-trg-bm --options-bm --name-src-bm --name-trg-bm]

- Bilingual units built from: POS-tags, lemmas, etc., or any src/trg combination. Ex:

(f, e)^{wrd} : 'translations|||traductions' (f, e)^{lem} : 'translation|||traduction' $(f, e)^{pos}$: 'NNS|||Noun' (f, e)^{lem:pos} : 'translation|||Noun'

- Each unit (--train-src --train-trg) is assign to one token (--train-src-bm --train-trg-bm)

Bilingual	<i>n</i> -gram	approach	to	SMT	Decod
0					
0					0
0					0
000					

The NCODE toolkit Comparison: NCODE vs. MOSES Concluding remarks

Model estimation

Step 5: rewrite rules (POS-based) [--max-rule-length --max-rule-cost]

- Rewrite rules are automatically learned from the bitext word alignments
- POS tags are used to gain generalization power
- Rules are filtered according to: $P(f \rightsquigarrow f^r) = \frac{count(f, f^r)}{\sum_{f' \in perm(f)} \frac{count(f, f^r)}{count(f, f^r)}}$

Bilingual	<i>n</i> -gram	approach	to	SMT	Decod
0					
0					0
0					0
000					

Decoding	Т
)	
)	C

Model estimation

Step 6: lexicalized reordering

- Four orientation types: (m)onotone order; (s)wap with previous tuple; (f)orward jump; (b)ackward jump.
 And two aggregated types: (d)iscontinuous: (b) and (f); and (c)ontinuous: (m) and (s)
- Smoothed maximum likelihood estimator, $\sigma = 1 / \sum_{o} count(o, f, e)$:

$$P(\textit{orientation}|f, e) = \frac{(\sigma/4) + \textit{count}(\textit{orientation}, f, e)}{\sigma + \sum_{o} \textit{count}(o, f, e)}$$

Bilingual	<i>n</i> -gram	approach	to	SMT	[Decod
0					(С
0					(C
0					(C
000						

Model estimation

Step 7: source (unfolded) n-gram Im [--train-src-unf --options-sm --name-src-unf]

- n-gram LM estimated over reordered training source words (lemmas, POS, etc.)
- Reordering introduced in the tuple extraction process. Ex: 'we want translations perfect'
- Options passed to SRILM, Ex: -options-sm -order_5_-unk_-kndiscount_-interpolate

Bilingual	<i>n</i> -gram	approach	to	SMT	Decoding
0					0
0					0
0					0
000					

Inference

.

binrules [-wrd s -tag s -rrules s -maxr i -maxc f]

- Rules extracted from reorderings introduced in the tuple extraction

translations perfect vanslations

- Referred to source-side tokens (words, POS, etc.): NNS JJ --- JJ NNS
- Filter rules (discard noisy alignments) maxr=10 (size) maxc=4 (cost, -logP)

Bilingual n-gra	am approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses
0		0	0			
0		0	•			
0		0	0			
000						

Inference

binfiltr [-tunits s -scores s -lexrm s -bilfactor s -srcfactor s -trgfactor s -maxs i]

- Collect useful information for given test sentences
- Filter tuples (discard noisy alignments) maxs=6 (size)
- Bilingual/source/target factors used with bilingual/source/target n-gram LMs
- Multiple LM's referred to multiple factors can be used
- Sentence-based LM's also available

Bilingual	<i>n</i> -gram	approach	to	SMT	Decoding
0					0
0					0
0					0
000					

The NCODE toolkit Comparison: NCODE vs. MOSES Concluding remarks

Inference

.

bincoder (weights) (files) (search settings)

- Model weights
- Files: (input) language models, filtered input (output) 1-best target word/translation unit hypotheses, Search graph, N-best hypotheses (OPENFST)
- Search settings: beam size, translation choices, input (OOV) words strategy, threads, etc.

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	•				
000						

Optimization (MERT)

mert-run.perl

- A wrapper for the MERT software made available in the MOSES toolkit (... soon also ZMERT)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: N	NCODE VS.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	•				
000						

Optimization (MERT)

mert-tst.perl

- Translates a given input file using the optimized model weights

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

Bilingual *n*-gram approach to SMT

Decoding

The NCODE toolkit

Comparison: NCODE vs. MOSES

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

Experimental framework

- French-to-German (2) tasks:
- news : News Commentary corpus (6th Workshop on SMT, WMT11)
 full : Additional data (up to 4 million sentence pairs)
- Tune: newstest2010, Test: newstest2009, newstest2011
- Same alignment (GIZA++), target LM (SRILM)
- NCODE employs TREETAGGER POS tags (rewrite rules)
- default MOSES settings: 14 features
- **default** NCODE settings: 14 + 2 features:
 - Bilingual *n*-gram over tuples built from words
 - Bilingual *n*-gram over tuples built from POS tags

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

- BLEU : Translation accuracy
- #units : Number of phrases/tuples (millions) after training (limited to 6 tokens)
- Memory : Memory (Mb) used by each decoder
 - Speed : Decoding speed (Words/second) (single-threaded translations)

Sustam	Tack	BL	Hunita	Momony	Snood		
System	TASK	newstest2009	newstest2011	#units	Wentory	Speed	
NCODE	news	13.89	13.83	0.5	7.7	54.4	
NCODE	full	15.09	15.26	7.5	9	33.9	
Moses	news	13.70	13.51	7.5	7.9	23.1	
	full	14.66	14.51	141	16	14.7	

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

- BLEU : Translation accuracy
- #units : Number of phrases/tuples (millions) after training (limited to 6 tokens)
- Memory : Memory (Mb) used by each decoder
 - Speed : Decoding speed (Words/second) (single-threaded translations)

Custom	Tack	BL	Hunita	Momony	Snood		
Jystem	TASK	newstest2009	newstest2011	#units	Wentory	Speed	
NCODE	news	13.89	13.83	0.5	7.7	54.4	
NCODE	full	15.09	15.26	7.5	9	33.9	
Moses	news	13.70	13.51	7.5	7.9	23.1	
	full	14.66	14.51	141	16	14.7	

• Slightly higher accuracy results for NCODE (within the confidence margin)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

- BLEU : Translation accuracy
- #units : Number of phrases/tuples (millions) after training (limited to 6 tokens)
- Memory : Memory (Mb) used by each decoder
 - Speed : Decoding speed (Words/second) (single-threaded translations)

Suctor	Tack	BL	Hunita	Momony	Snood		
System	TASK	newstest2009	newstest2011	#units	Wentory	Speed	
NCODE	news	13.89	13.83	0.5	7.7	54.4	
NCODE	full	15.09	15.26	7.5	9	33.9	
Moses	news	13.70	13.51	7.5	7.9	23.1	
	full	14.66	14.51	141	16	14.7	

- Slightly higher accuracy results for NCODE (within the confidence margin)
- NCODE outperforms MOSES in data efficiency:
 - smaller set of tuples than phrases (full: 20 times smaller)
 - lower memory needs for $\rm NCODE$ (full: \sim half than $\rm MOSES)$

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

- BLEU : Translation accuracy
- #units : Number of phrases/tuples (millions) after training (limited to 6 tokens)
- Memory : Memory (Mb) used by each decoder
 - Speed : Decoding speed (Words/second) (single-threaded translations)

Custom	Tack	BL	Hunita	Momony	Speed		
System	Task	newstest2009	newstest2011	#units	wemory	Speed	
NCODE	news	13.89	13.83	0.5	7.7	54.4	
NCODE	full	15.09	15.26	7.5	9	33.9	
Moses	news	13.70	13.51	7.5	7.9	23.1	
	full	14.66	14.51	141	16	14.7	

- Slightly higher accuracy results for NCODE (within the confidence margin)
- NCODE outperforms MOSES in data efficiency:
 - smaller set of tuples than phrases (full: 20 times smaller)
 - lower memory needs for $\rm NCODE$ (full: \sim half than $\rm MOSES)$
- Nearly twice faster (search pruning settings are **not** tested)

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison:	NCODE vs.	Moses	Concluding remarks
0	0	0				
0	0	0				
0	0	0				
000						

Bilingual *n*-gram approach to SMT

Decoding

The NCODE toolkit

Comparison: NCODE vs. MOSES

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

- Developed to run on $\ensuremath{\mathrm{Linux}}$ systems
- Written in Perl and $\operatorname{C++}$
- Prerequisites
 - to compile: $\ensuremath{\operatorname{KENLM}}$ and $\ensuremath{\operatorname{OPEnFst}}$ libraries
 - to run: ${\rm SriLM}$ and the MERT implementation in ${\rm MOSES}$

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

- Developed to run on LINUX systems
- Written in Perl and $\operatorname{C++}$
- Prerequisites
 - to compile: $\ensuremath{\operatorname{KENLM}}$ and $\ensuremath{\operatorname{OPEnFst}}$ libraries
 - to run: ${\rm SriLM}$ and the MERT implementation in ${\rm MOSES}$
- Multithreaded
- (Multiple) src/trg/bil *n*-gram LM's handled by KENLM
- Factored src/trg/bil *n*-gram LM's

Bilingual <i>n</i> -gram approach to SMT	Decoding	The NCODE toolkit	Comparison: NCODE vs. MOSES	Concluding remarks
0	0	0		
0	0	0		
0	0	0		
000				

- Developed to run on LINUX systems
- Written in Perl and $\operatorname{C++}$
- Prerequisites
 - to compile: $\ensuremath{\operatorname{KENLM}}$ and $\ensuremath{\operatorname{OPEnFst}}$ libraries
 - to run: ${\rm SriLM}$ and the MERT implementation in ${\rm MOSES}$
- Multithreaded
- (Multiple) src/trg/bil *n*-gram LM's handled by KENLM
- Factored src/trg/bil *n*-gram LM's
- Under development:
 - Client/server architecture
 - Optimization by ZMERT
 - Sentence-based bonus models

Thanks

NCODE is freely available at http://ncode.limsi.fr/ (http://www.limsi.fr/Individu/jmcrego/bincoder/)

Adrià de Gispert, Patrik Lambert, Marta Ruiz, Alexandre Allauzen, Aurélien Max, Thomas Lavergne and Artem Sokolov also contributed to create the toolkit.

