
The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 87–96

An Experimental Management System

Philipp Koehn
University of Edinburgh

Abstract
We describe Experiment.perl, an experimental management system, that allows the execu-

tion of the entire training and testing pipeline of a machine translation experiment with one
configuration files. When carrying out multiple experimental runs with changed settings, Ex-
periment.perl automatically detects which steps need to be re-run and which can be re-used.

1. Introduction

Running a machine translation experiment involves many steps: preparing train-
ing data, building language and translation models, tuning, testing, scoring and anal-
ysis of the results. For most of these steps, a different tool needs to be invoked, so this
easily becomes very cumbersome. The Experiment Management System (EMS), or
Experiment.perl, for lack of a better name, makes it much easier to run experiments.
It ships with the Moses machine translation toolkit (Koehn et al., 2007).

A typical example is given in Figure 1. The graph was automatically generated by
Experiment.perl. All that needed to be done was to specify one single configuration
file that points to data files and settings for the experiment. In the graph, each step is a
small box. For each step, Experiment.perl builds a script file that gets either submitted
to a compute cluster or executed on the same machine. Note that some steps are quite
involved, for instance tuning: On a cluster, the tuning script runs on the head node a
submits jobs to the queue itself.

Experiment.perl makes it easy for multiple experimental runs with different set-
tings]. It automatically detects which steps do not have to be executed again. Experi-
ment.perl plays the same role as LoonyBin (Clark et al., 2010), but there are significant

© 2010 PBML. All rights reserved. Corresponding author: pkoehn@inf.ed.ac.uk
Cite as: Philipp Koehn. An Experimental Management System. The Prague Bulletin of Mathematical Linguis-
tics No. 94, 2010, pp. 87–96. doi: 10.2478/v10108-010-0023-5.

PBML 94 SEPTEMBER 2010

Figure 1. Workflow generated by Experiment.perl: Steps (such as run-giza are
grouped into modules (such as TRAINING). Dependencies are indicated by arrows.

Skipped steps have a pale background.

88

P. Koehn Experimental Management System (87–96)

differences in its usage. Experiment.perl uses a textual configuration file to set up an
experiment and a meta configuration file to define all possible workflows, LoonyBin
offers a graphical user interface that lets the user connect steps.

2. Design

Experiment.perl breaks up training, tuning, and evaluating of a statistical machine
translation system into a number of steps, which are then scheduled to run in paral-
lel or sequence depending on their inter-dependencies and available resources. The
possible steps are defined in the file experiment.meta. An experiment is defined by
a configuration file.

2.1. Experiment.Meta

The actual steps, their dependencies and other salient information is to be found
in the file experiment.meta. Think of experiment.meta as a ”template” file. Steps are
grouped into modules, which are:

• CORPUS: preparing a parallel corpus
• INPUT-FACTOR and OUTPUT-FACTOR: commands to create factors
• TRAINING: training a translation model
• LM: training a language model
• INTERPOLATED-LM: interpolate language models
• SPLITTER: training a word splitting model
• RECASING: training a recaser
• TRUECASING: training a truecaser
• TUNING: running minumum error rate training to set component weights
• TESTING: translating and scoring a test set
• REPORTING: compile all scores in one file

To give an example of a step definition in experiment.meta, here the parts of the
definition for LM:get-corpus and LM:tokenize:

get-corpus
in: get-corpus-script
out: raw-corpus
[...]

tokenize
in: raw-corpus
out: tokenized-corpus
[...]

89

PBML 94 SEPTEMBER 2010

Each step takes some input (in) and provides some output (out). This also es-
tablishes the dependencies between the steps. The step tokenize requires the input
raw-corpus. This is provided by the step get-corpus.

The file experiment.meta provides a generic template for steps and their interac-
tion. For an actual experiment, a configuration file determines which steps need to
be run. This configuration file is specified when invoking experiment.perl. It may
contain for instance the following:

[LM:europarl]

raw corpus file
#
raw-corpus = $europarl-v3/training/europarl-v3.en

Here, the corpus to be used for language modeling is named europarl and it is
provided in raw text format in the location $europarl-v3/training/europarl-v3.en
(the variable $europarl-v3 is defined elsewhere in the config file). The effect of this
specification in the config file is that the step get-corpus does not need to be run,
since its output is given as a file. The workflow starts with the step tokenize.

The entire definition of an experiment follows this logic, which is very similar to
the principles of a Unix Makefile. The ultimate purpose of an experiment is to gener-
ate a result file at the end. If this is not given, then scoring scripts need to be called.
Scoring scripts require the output of the decoder on the test sets. The decoder requires
a tuned model. Tuning requires a trained model. Trained models require language
models and model files, and so on. The workflow, as show in Figure 1, is generate
bottom up, following the input/output dependencies of steps.

2.2. Elements of Step Definitions

Several parameters for step definitions are used in experiment.meta:
• in and out: Established dependencies between steps; input may also be pro-

vided by files specified in the configuration.
• default-name: Name of the file in which the output of the step will be stored.
• template: Template for the command that is placed in the execution script for

the step.
• template-if: Potential command for the execution script. Only used, if a spec-

ified setting exists.
• error: Experiment.perl detects if a step failed by scanning STDERR for key words

such as killed, error, died, not found, and so on. Additional key words and
phrase are provided with this parameter.

• not-error: Declares default error key words as not indicating failures.
• pass-unless: Only if the given setting is used, this step is executed, otherwise

the step is passed (illustrated by a yellow box in the graph).

90

P. Koehn Experimental Management System (87–96)

• ignore-unless: If the given setting is used, this step is not executed. This over-
rides requirements of downstream steps.

• rerun-on-change: If similar experiment are runs, the output of steps may be
used, if input and settings are the same. This specifies settings whose change
disallows a re-use in different run.

• parallelizable: When running on a cluster or a multi-core machine, this step
may be parallelized (only if generic-parallelizer is set in the config file).

• qsub-script: If running on a cluster, this step is run on the head node, and not
submitted to the queue (because it submits jobs itself).

To complete our example, the full definition of the step LM:tokenize is below.

tokenize
in: raw-corpus
out: tokenized-corpus
default-name: lm/tok
pass-unless: output-tokenizer
template: $output-tokenizer < IN > OUT
parallelizable: yes

The step takes raw-corpus and produces tokenized-corpus. It is parallizable
with the generic parallelizer. The output is stored in the file according to the def-
inition corpus/tok. Note that the actual file name also contains the corpus name,
and the run number. In our example the tokenized corpus is stored in a file named
lm/europarl.tok.1. The step is only executed, if output-tokenizer is specified. The
template indicate how the command lines in the execution script for the steps are
formed.

2.3. Multiple Corpora, One Translation Model

We may use multiple parallel corpora for training a translation model or multiple
monolingual corpora for training a language model (or use multiple language mod-
els). Each of these have their own instances of the CORPUS and LM module. There
may be also multiple test sets in TESTING). However, there is only one translation
model and hence only one instance of the TRAINING module. The definitions in ex-
periment.meta reflects the different nature of these modules. For instance CORPUS is
flagged as multiple, while TRAINING is flagged as single.

When defining settings for the different modules, the singular module TRAINING
has only one section, while this one general section and specific LM sections for each
training corpus. In the specific section, the corpus is named, e.g. LM:europarl. When
looking up the parameter settings for a step, first the set-specific section (LM:europarl)
is consulted. If there is no definition, then the module definition (LM) and finally the
general definition (in section GENERAL) is consulted. In other words, local settings
override global settings.

91

PBML 94 SEPTEMBER 2010

2.4. Configuration File

A configuration file for an experimental run consists of a collection of settings,
one per line with empty lines and comment lines for better readability, organized in
sections for each of the modules.

The start of each section is indicated by the section name in square brackets ([TRAIN-
ING] or [CORPUS:europarl]). If the word IGNORE is appended to a section definition,
then the entire section is ignored.

The syntax of setting definition is setting = value (note: spaces around the equal
sign). If the value contains spaces, it must be placed into quotes (setting = "the
value"), except when a vector of values is implied (only used when defining list of
factors: output-factor = word pos. Comments are indicated by a hash (#).

Settings can be used as variables to define other settings:

working-dir = /home/pkoehn/experiment
wmt10-data = $working-dir/data

Variable names may be placed in curly brackets for clearer separation:

wmt10-data = ${working-dir}/data

Such variable references may also reach other modules:

[RECASING]
tokenized = $LM:europarl:tokenized-corpus

Finally, reference can be made to settings that are not defined in the configuration
file, but are the product of the defined sequence of steps. Say, in the above example,
tokenized-corpus is not defined in the section LM:europarl, but instead raw-corpus.
Then, the tokenized corpus is produced by the normal processing pipeline. Such an
intermediate file can be used elsewhere:

[RECASING]
tokenized = [LM:europarl:tokenized-corpus]

Some error checking is done on the validity of the values in the configuration file
before an experimental run is executed. All values that seem to be file paths trigger
the existence check for such files. A file with the prefix of the value must exist.

2.5. Step Files

Let us follow our example of the tokenization step in the language model module
in more detail. Recall that the LM:europarl section has a specification of raw-corpus
to $europarl-v3/training/europarl-v3.en. Since only the raw corpus, but not a
tokenized corpus is specified, Experiment.perl concludes that it needs to run the tok-
enization step.

92

P. Koehn Experimental Management System (87–96)

The directory steps contains the script that executes each step, its and -
 output, and meta information:

steps/1/LM_europarl_tokenize.1
steps/1/LM_europarl_tokenize.1.DONE
steps/1/LM_europarl_tokenize.1.INFO
steps/1/LM_europarl_tokenize.1.STDERR
steps/1/LM_europarl_tokenize.1.STDERR.digest
steps/1/LM_europarl_tokenize.1.STDOUT

The file steps/1/LM_europarl_tokenize.1 is the shell script that is run to execute
the step. The file with the extension DONE is created when the step is finished - this
communicates to the scheduler that subsequent steps can be executed. The file with
the extension INFO contains meta information - essential the settings and dependen-
cies of the step. This file is checked to detect if a step can be re-used in subsequent
experimental runs.

In case that the step crashed, we expect some indication of a fault in STDERR (for
instance the words core dumped or killed). This file is checked to see if the step was
executed successfully, so subsequent steps can be scheduled or the step can be re-
used in new experiments. Since the STDERR file may be very large (some steps create
Megabytes of such output), a digested version is created in STDERR.digest. If the step
was successful, it is empty. Otherwise it contains the error pattern that triggered the
failure detection.

2.6. Re-Use of Steps

Let us now take a closer look at re-use. If we run the experiment again but change
a settings, say, the order of the language model, then there is no need to re-run the
tokenization, but only language model training.

Here is the definition of the language model training step in experiment.meta:

train
in: split-corpus
out: lm
default-name: lm/lm
ignore-if: rlm-training
rerun-on-change: lm-training order settings
template: $lm-training -order $order $settings -text IN -lm OUT
error: cannot execute binary file

The mention of order in the list behind rerun-on-change informs experiment.perl
that this step does need to be re-run, if the order of the language model changes. Since
none of the settings in the chain of steps leading up to the training have been changed,
those can be re-used.

93

PBML 94 SEPTEMBER 2010

Figure 2. Comparing outputs from two experimental runs

If the language model order is changed and the experiment.perl is run again in the
same working directory, you will see the following files in the directory lm:

% ls -tr lm/*
lm/europarl.tok.1
lm/europarl.truecased.1
lm/europarl.lm.1
lm/europarl.lm.2

Note that a new language model was trained for this second run (lm/europarl.lm.2),
but no new tokenized and truecased corpus files. These were re-used from run 1.

Steps are re-used from previous runs, unless settings listed under rerun-on-change
are changed, one of its specified input files (if any) are changed, and if one of its previ-
ous steps are re-run. Note that if a filename is not changed, but its time stamp differs,
this triggers re-running a step. This ensures that only a minimum number of steps
are run to produce the exact same outcome as if all steps are run.

2.7. Web Interface and Analysis

Experiment.perl also offers a web interface to the experimental runs for easy access
and comparison of experimental results. The web interface gives a listing of experi-
ments and runs for each experiments, with a display of automatic metric scores, and
links to configuration files and outputs.

You can include additional analysis for an experimental run in the web interface by
specifying the setting analysis in its configuration file. This adds reports n-gram pre-
cision and recall statistics and color-coded n-gram correctness markup for the output
sentences to the web interface. See Figure 2 for an example.

The output is color-highlighted according to n-gram matches with the reference
translation. The following colors are used. The darker the color of an output word,
the higher n-gram match to the reference translation it is part of.

Additional reports are available when adding the settings analyze-coverage and
report-segmentation. The setting analyze-coverage include a coverage analysis:
which words and phrases in the input occur in the training data or the translation
table? This is reported in color coding and in a yellow report box when moving the

94

P. Koehn Experimental Management System (87–96)

mouse of the word or the phrase. Also, summary statistics for how many words occur
how often are given, and a report on unknown or rare words is generated.

The setting report-segmentation creates summary statistics about what kind of
phrase mappings are used (one word to one word, 1-2, 2-2, etc.), as well as markup of
the sentence pair with the phrase segmentation. The phrase segmentation is indicated
with black boxes around the words, and the alignment is shown when moving the
mouse on the phrases.

3. Usage
3.1. Quick Start

Experiment.perl is extremely simple to use:
• Find experiment.perl in scripts/ems
• Get a sample configuration file from someplace (for instance scripts/ems/exam-

ple/config.toy).
• Set up a working directory for your experiments for this task (mkdir does it).
• Edit the following path settings in config.toy

– working-dir
– data-dir
– moses-script-dir
– moses-src-dir
– srilm-dir
– decoder

• Run experiment.perl -config config.toy from your working directory.
• Marvel at the graphical plan of action.
• Run experiment.perl -config config.toy -exec.
• Check the results of your experiment (in evaluation/report.1)

3.2. More Examples

The exampledirectory contains some additional examples. These require the train-
ing and tuning data released for the Shared Translation Task for WMT 2010.

The examples using these corpora are
• a basic phrase based model
• a factored phrase based model
• a hierarchical phrase based model
• a target syntax model
The factored model using all the available corpora is identical to the Edinburgh

submission (Koehn et al., 2010) to the WMT 2010 shared task for English-Spanish,
Spanish-English, and English-German language pairs. The French language pairs
also used the 109 corpus, the Czech language pairs did not use the POS language
model, and German-English used additional pre-processing steps.

95

PBML 94 SEPTEMBER 2010

4. Outlook

We have been using Experiment.perl for years and are satisfied with its core func-
tionalities. In future work, we would like support job scheduling on Hadoop clusters
and extend the analysis facility.

Acknowledgments

This work was supported in part by the EuroMatrixPlus project funded by the Eu-
ropean Commission (7th Framework Programme) and in part under the GALE pro-
gram of the Defense Advanced Research Projects Agency, Contract No. HR0011-06-
C-0022.

Bibliography

Clark, Jonathan H., Jonathan Weese, Byung Gyu Ahn, Andreas Zollmann, Qin Gao, Kenneth
Heafield, and lon Lavie. The machine translation toolpack for loonybin: Automated man-
agement of experimental machine translation hyperwork. The Prague Bulletin of Mathemati-
cal Linguistics, 93:117–126, January 2010.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Christopher J. Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for
statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P/P07/P07-2045.

Koehn, Philipp, Barry Haddow, Philip Williams, and Hieu Hoang. More linguistic annota-
tion for statistical machine translation. In Proceedings of the Joint Fifth Workshop on Statisti-
cal Machine Translation and MetricsMATR, pages 96–101, Uppsala, Sweden, July 2010. URL
http://www.aclweb.org/anthology/W10-1716.

Address for correspondence:
Philipp Koehn
pkoehn@inf.ed.ac.uk
School of Informatics, University of Edinburgh
10 Crichton Street
Edinburgh, EH8 9AB, United Kingdom

96

http://www.aclweb.org/anthology/P/P07/P07-2045
http://www.aclweb.org/anthology/W10-1716

	Introduction
	Design
	Experiment.Meta
	Elements of Step Definitions
	Multiple Corpora, One Translation Model
	Configuration File
	Step Files
	Re-Use of Steps
	Web Interface and Analysis

	Usage
	Quick Start
	More Examples

	Outlook

