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Abstract
Jane is RWTH’s hierarchical phrase-based translation toolkit. It includes tools for phrase ex-

traction, translation and scaling factor optimization, with efficient and documented programs
of which large parts can be parallelized. The decoder features syntactic enhancements, reorder-
ings, triplet models, discriminative word lexica, and support for a variety of language model
formats. In this article, we will review the main features of Jane and explain the overall archi-
tecture. We will also indicate where and how new models can be included.

1. Introduction

This article describes the open source hierarchical phrase-based decoder Jane and
its associated toolkit, which was released for non-commerical use in Vilar et al. (2010).
Jane follows the hierarchical phrase model as described in Chiang (2007), which can
be seen as an extension of the standard phrase model, where the phrases are allowed
to have “gaps”. In this way, long-distance dependencies and reorderings can be mod-
elled in a consistent way. As in nearly all current statistical approaches to machine
translation, this model is embedded in a log-linear model combination.

Jane features syntactic enhancements, additional reorderings, triplet models, dis-
criminative word lexica, and support for a variety of language model formats. The
toolkit also implements algorithms for phrase table extraction, translation and scal-
ing factor optimization. Most processes can be parallelized if the Sun Grid Engine
is installed. RWTH has been developing this toolkit during the last two years and it
was used successfully in numerous machine translation evaluations. It is written in
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C++ with special attention to clean code, extensibility and efficiency, and is available
under an open-source non-commercial license.

This article is mainly directed at developers looking for a short overview of the
toolkit’s architecture. We will briefly review the main features of Jane, with a strong
focus on implementation decisions, and we will also describe how and where new
extraction and translation models should be implemented by taking advantage of
existing classes. For a more general description, we refer to Vilar et al. (2010), and
for performance results we refer to system descriptions of international evaluations,
e.g. Heger et al. (2010). Note that an in-depth manual is included in the Jane package
as well.

The article is structured as follows: we review the tool invocation in Section 2.
Then, we review the main features that are implemented and how they can be ex-
tended, first for the extraction (Section 3), then for the decoding (Section 4). We pro-
ceed to mention some other included tools in Section 5. After a short comparison with
Joshua in Section 6, we give a short conclusion in Section 7.

1.1. Related Work

Jane implements features presented in previous work, developed both at RWTH
and other groups. As we go over the features of the system we will provide the cor-
responding references. It is not the first system of its kind, although it provides some
unique features. There are other open source hierarchical decoders available, one of
them being SAMT (Zollmann and Venugopal, 2006). The current version is oriented
towards Hadoop usage, the documentation is however still missing. Joshua (Li et al.,
2009, 2010) is a decoder written in Java by the John Hopkins University. This project is
the most similar to our own, however both were developed independently and each
one has some unique features. Moses (Koehn et al., 2007) is the de-facto standard
phrase-based translation decoder and has now been extended to support hierarchical
translation.

2. Invocation

The main core of Jane has been implemented in C++. It is mainly directed at linux
systems, and uses SCons (http://www.scons.org) as its build system. Prerequisites
for some tools are the SRI language model (Stolcke, 2002), cppunit and the Numeri-
cal Recipes (Press et al., 2002). Upon building, a variety of programs and scripts are
created to offer a flexible extraction, translation and optimization framework. Align-
ment training is not included, since well established tools for this purpose exist. Jane
accepts most common alignment formats.

In general, all tools support the option – – help which outputs a compact descrip-
tion of the available command line options. Some programs also support – – man for
a more verbose description in the form of a Unix man page. These manual pages are
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generated automatically and thus are always up-to-date. Nearly all components ac-
cept a – – verbosity parameter for controlling the amount of information they report.
The parameter can have 6 possible values, ranging from noLog to insaneDebug.

The options have a hierarchical structure, and the more complex modules within a
larger tool typically have their own naming space. For example, the size of the internal
n-best list in the cube prune algorithm is set with – – CubePrune.generationNbest,
and the file for the language model can be set with – – CubePrune.LM.file. We refer to
each of these sections as components. There are components for the search algorithms,
for the language models, for the phrase table, et cetera. The name can also be replaced
by a wildcard (*) if all components are to be addressed.

Although all of the options can be specified in the command line, a config file can
be used in order to avoid repetitive typing, by invoking the program with – – config
<config-file>. Options specified in the command line have precedence over the
config file.

If the Sun Grid Engine (http://www.sun.com/software/sge/) is available, nearly
all operations of Jane can be parallelized. For the extraction process, the corpus is
split into chunks (the granularity being user-controlled) which are distributed in the
computer cluster. Count collection, marginal computation and count normalization
all happen in an automatic and parallel manner. For the translation process, a batch
job is started on a number of computers. A server distributes the sentences to translate
to the computers that have been made available to the translation job. Additionally,
for the minimum error rate training methods, random restarts may be performed on
different computers in a parallel fashion.

The same client-server infrastructure used for parallel translation may also be reused
for interactive systems. Although no code in this direction is provided, one would
only need to implement a corresponding frontend which communicates with the
translation server (which may be located on another machine).

3. Extraction

In the extraction process, for every training source sentence fJ1, target sentence
eI1 and alignment A we generate a set of phrases. First, we extract the set of initial
phrases, as defined for the standard phrase-based approach:

BP(fJ1, e
I
1,A) :=

{⟨fj2j1 , ei2i1⟩ | j1, j2, i1, i2 so that

∀(j, i) ∈ A : (j1 ≤ j ≤ j2 ⇔ i1 ≤ i ≤ i2)

∧∃(j, i) ∈ A : (j1 ≤ j ≤ j2 ∧ i1 ≤ i ≤ i2)
}
.

(1)

See Figure 1(a) for an example of a valid lexical phrase. Words that remain un-
aligned in the corpus might be problematic for the translation if at translation time
they appear in different contexts as in the training corpus. They are not treated as
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Figure 1. Extraction heuristics applied for initial phrases

unknown words, as Jane has them in its internal vocabulary, but is unable to produce
a valid parse in the decoding step, which is why we allow for three heuristics in the
extraction procedure. In the single word heuristic, all single-word pairs derived from
each alignment are extracted, even if they would not consist of a valid phrase based on
Equation 1 (Figure 1(b)). In the forced single word heuristic (Figure 1(c)), all word pairs
that are neither covered by a source nor a target alignment are extracted as additional
word pairs . Finally, in the non-aligned heuristic, all initial phrases are also extended
whenever there are non-aligned words on the phrase border (Figure 1(d)).

After the extraction of the lexical phrases, we look for those phrases that con-
tain smaller sub-phrases to extract hierarchical phases. The smaller phrases are sup-
pressed and gaps are produced on the larger ones. For computing probabilities, we
compute the counts of each phrase and normalize them, i.e. compute their relative
frequencies. Note that the heuristics mentioned above are typically restricted from
forming hierarchical phrases, since for some corpora we would produce an arbitrary
large number of entries, but this behaviour can be controlled through run-time op-
tions. Also due to phrase table size considerations, we typically filter the phrases to
only those that are needed for the translation of a given corpus.

Figure 2 shows a schematic representation of the extraction process. In a first pass
we extract the bilingual phrases that are necessary for translating the given corpus.
For normalization, we still need to compute the marginals for the source and target
parts of the phrases. For the source marginals, we can already limit the computation
at this stage using the source filter text, but for the target marginals, we do not know
in advance which ones will be necessary. Therefore we compute them in a second
pass, using the target parts of the bilingual phrases as a target filter.

When parallelizing this operation, the corpus is split into chunks which are dis-
tributed in the computer cluster. Count collection, marginal computation and count
normalization all happen in an automatic manner.
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Figure 2. Workflow of the extraction procedure

3.1. Additional Features

Each phrase pair can have an arbitrary number of additional features associated
with it. They may hold information about the alignment within the phrase, linguis-
tic information, and more. In order to facilitate the addition of such models, Jane
provides two virtual classes, which can be inherited from.

The class AdditionalExtractionInformation is a wrapper class for the additional
information. The main function that has to be implemented deals with the combina-
tion of the feature with another instance of itself. This is necessary whenever the same
phrase can be extracted more than once, from different sentence pairs or even in the
same sentence pair. Additionally, functions for writing the features into the phrase
table have to be provided. In the normalization step, this class is also invoked with the
corresponding information about the marginals, in case that it needs this information
for producing the final score.

The class AdditionalExtractionInformationCreator is responsible for creating
instances of AdditionalExtractionInformation. As such, it receives the information
available to the extraction process and computes the additional features for the phrase
pair. For hierarchical phrases, it may take into account the additional information of
the larger phrase and of the phrase that produces the gap in it. In order to assign de-
scriptive labels to the different AdditionExtractionInformation classes, new classes
must be registered in the corresponding factory functions. The extraction scripts will
then automatically perform the necessary steps for generating the additional features,
including joining and normalization of the counts.

3.2. Implemented Additional Features

With Jane, it is possible to include numerous additional features in the phrase
table. We proceed to review a few of them. The alignment information remembers
the internal alignment of the extracted phrase. The dependency information augments
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the phrases with additional dependency-level information in the spirit of Shen et al.
(2008). Given a dependency tree at sentence level, we mark phrases that are syntacti-
cally valid, and to preserve inner word dependencies. The heuristic information marks
for each phrase, which of the extraction heuristics as defined in Section 3 have been
used to create this particular phrase. The parse match information marks whether the
phrase matches the yield of a parse tree node, a rather simple approach which has
been succesfully applied in Vilar et al. (2008). Finally, the soft syntactic label informa-
tion adds syntactic labels to each phrase and each non-terminal, which are typically
derived from a given parse tree. They can be used to compute an additional parse
probability based on linguistic experiences, e.g. by emphasizing the need for a verb
in the sentence, or by penalizing whenever a noun phrase non-terminal is substituted
with a verb phrase, as in Venugopal et al. (2009).

4. Decoding

The search for the best translation proceeds in two steps. First, a monolingual
parsing of the input sentence is carried out using the CYK+ algorithm (Chappelier and
Rajman, 1998), a generalization of the CYK algorithm which relaxes the requirement
for the grammar to be in Chomsky normal form. From the CYK+ chart we extract a
hypergraph representing the parsing space.

In a second step the translations are generated from the hypergraph, computing
the language model scores in an integrated fashion. Both the cube pruning and cube
growing algorithms (Huang and Chiang, 2007) are implemented. For the latter case,
the extensions concerning the language model heuristics presented in Vilar and Ney
(2009) have also been included.

The majority of the code for both the cube pruning and cube growing algorithms
is included in corresponding classes derived from an abstract hypernode class. In
this way, the algorithms have access to the hypergraph structure in a natural way.
The CYK+ implementation is parametrized in such a way that the derived classes are
created as needed. This architecture is highly flexible, and preliminary support for
forced alignments in the spirit of Wuebker et al. (2010) is also implemented in this
way.

Jane supports four formats for n-gram language models: the ARPA format, the
SRI toolkit binary format (Stolcke, 2002), randomized LMs as described in Talbot and
Osborne (2007), using the open source implementation made available by the authors
of the paper and an in-house, exact representation format. In order to ease the inte-
gration of these possibilities, an abstract interface class has been implemented, which
provides access to the necessary operations of the language model.

The actual translation procedure is clearly separated from the input/output opera-
tions. These are handled in the RunMode classes, which are responsible of obtaining the
text to translate, calling the translation methods with the appropriate parameters, and
writing the result to disk. There are three main RunModes: SingleBestRunMode for
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single-best operation, NBestRunMode for generation of n-best lists and Optimization-
ServerRunMode. This last one starts a Jane server which offers both single-best and
n-best translation functionality, communicating over TCP/IP sockets. In the current
implementation this is used for parallel translation and/or optimization in a com-
puter cluster, but it may be easily reused for other applications, like online translation
services or interactive machine translation.

For parallelized operation, a series of jobs are started in parallel in the computer
cluster. The first one of these jobs is the master and controls the translation process.
All Jane processes are started in server mode and wait for translation requests from
the master job.

The translation servers are allocated in a dynamic way; if more computers are
made available for the translation job, they can be added on the fly to the translation
task. The longest sentences are the first ones sent to translate. This simple heuris-
tic performs load balancing, trying to avoid “temporal deadlocks” when the whole
array job is just waiting for a computer to finish the translation of a long sentence
that happened to be at the end of the corpus. A simple fault-tolerance system is also
built-in, which tries to detect if a computer has had problems and resends the associ-
ated sentence to another free node. It is however quite basic and although it detects
most problems, there are still some cases where non-responding computers may go
undetected.

4.1. Additional Models

Jane is designed to be easily extended with new models, added in the log-linear
combination. If the new features can be computed at phrase level, the best way is to
include them at extraction time, as described in Section 3.1. The decoder can then be
instructed to use these additional features at translation time.

For models that cannot computed this way, an abstract SecondaryModel class can
be derived from. The main function in this class is the scoreBackpointer method,
which receives a derivation to score, together with a reference to the current hyper-
node. With this information, the method can obtain all the necessary information
for computing the model score. Secondary models implemented this way must be
registered in the SecondaryModelCreator class. They will be then known to Jane,
and facilities for scaling factor allocation, parameter handling and multiple model
instantiation will be provided.

There is a limitation to the kind of models that can be implemented this way,
namely the models can only influence the search process by generating new scores.
No additional information that may change the hypothesis space by e.g. hypothesis
recombination is (yet) supported.
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4.2. Implemented Additional Models

Like with the additional extraction models, several additional models during the
translation are already implemented in Jane using the SecondaryModel infrastruc-
ture. In this section we list some of them.

Extended Lexicon Models The Extended Lexicon Models include discriminative lex-
icon models and triplet models as in Mauser et al. (2009), and are able to take long
range dependencies across the whole source sentence into account. The triplet model
extends the well-known IBM model 1 (Brown et al., 1993), by estimating the probabil-
ity p(e|f, f ′) of a target word e based on two source words f, f ′. Like IBM 1, the triplet
model is trained iteratively using the EM algorithm. During extraction and decoding,
f is the source word aligned to the target word e to be translated, while f ′ ranges over
the words in the source sentence. Thus, the second source word f ′ enables the model
to make more informed decisions about translating f into e.

The discriminative word lexicon uses the whole source sentence to predict target
words, thus taking into account global dependencies. It is modeled as a combina-
tion of simple classifiers for each word e from the target vocabulary VE. Each of these
classifiers models whether a certain word e is present in the target sentence (δe = 1) or
not (δe = 0), given the set of source words f. The probability of the target sentence is
then modeled as the product of all positive classification probabilities, over all words
in the target sentence, times the product of all negative classification probabilities over
all words not contained in the target sentence.

Soft Syntactic Labels The Soft Syntactic Labels (cf. Section 3.2) extend the hierarchi-
cal model in a similar way as in the work of Venugopal et al. (2009): for every rule in
the grammar, we store information about the possible non-terminals that can be sub-
stituted in place of the generic non-terminal X, together with a probability for each
combination of non-terminal symbols (cf. Figure 3).

During decoding, we compute two additional quantities for each derivation d. The
first one is denoted by ph(Y|d) (h for “head”) and reflects the probability that the
derivation d under consideration of the additional non-terminal symbols has Y as its
starting symbol. This quantity is needed for computing the probability psyn(d) that
the derivation conforms with the extended set of non-terminals.

Dependency With the Dependency model, we are able to introduce language models
that span over longer distances than shallown-gram language models. In Figure 4, we
can for example evaluate the left-handed dependency of the structure “In”, followed
by “industry”, on the structure “faced”. For this, we employ a simple language model
trained on dependency structures and compute the probability for the trigram “In
industry faced-as-head”.
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Figure 3. Visualization of the soft syntactic labels approach. For each derivation, the
probabilities of non-terminal labels are computed.
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Figure 4. Dependency parsing for the sentence “In recent years, the textile industry in
China faced serious difficulties”.

The model requires a given dependency tree while extracting the phrase table,
and works with this information to derive a tree of the output translation. Note that
Shen et al. (2008) only allow for two structures to be extracted: the first possibility is
what the authors called a fixed dependency structure. With the exception of one word
within this phrase, called the head, no outside word may have a dependency within
this phrase. Also, all inner words may only depend on each other or on the head.
For a second structure, called a floating dependency structure, the head dependency
word may also exist outside the phrase. We do not restrict our algorithms to fixed
and floating structures, but rather mark invalid phrases during reconstruction and
proceed to reconstruct as much of the dependencies as possible.
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Table 1. Speed comparison Jane vs. Joshua.

System words/sec

Joshua 11.6
Jane cube prune 15.9
Jane cube grow 60.3

5. Other Tools

For optimization of the log-linear scaling factors, we support the minimum error
rate training (MERT) described in Och (2003), the MIRA algorithm, applied for ma-
chine translation in Chiang et al. (2009), and the downhill simplex method (Nelder
and Mead, 1965).

Jane provides a tool to compute the grow-diag alignment as presented in Koehn
et al. (2003), as well as its alternative as presented in Och and Ney (2003).

6. Comparison with Joshua

As stated in Section 1.1, Joshua (Li et al., 2009) is the most similar decoder to our
own, developed in parallel at the Johns Hopkins University.

Jane was started separately and independently. In their basic working mode, both
systems implement parsing using a synchronous grammar and include language model
information. Each of the projects then progressed independently, and each has unique
extension. Efficiency is one of the points where we think Jane outperforms Joshua.
One of the reasons can well be the fact that it is written in C++ while Joshua is writ-
ten in Java. We performed a control experiment on the IWSLT’08 Arabic to English
translation taks, using the same settings for both decoders and making sure that the
output of both decoders was identical1. The speed results can be seen in Table 1. Jane
operating with cube prune is nearly 50% faster than Joshua and the speed difference
can be improved by using cube growing, although with a slight loss in translation
performance. This may be interesting for certain applications like e.g. interactive ma-
chine translation or online translation services, where the response time is critical
and sometimes even more important than a small (and often hardly noticeable) loss
in translation quality.

For comparison of translation results, we refer to the results of the last WMT eval-
uation shown in Table 2. Johns Hopkins University participated in this evaluation us-
ing Joshua, the system was trained by its original authors (Schwartz, 2010) and thus
can be considered to be fully optimized. RWTH also participated using Jane among

1With some minor exceptions, e.g. unknown words.
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Table 2. Results for Jane and Joshua in the WMT 2010 evaluation campaign.

Jane Joshua
BLEU[%] TER[%] BLEU[%] TER[%]

German-English 21.8 69.5 19.5 66.0
English-German 15.7 74.8 14.6 73.8
French-English 26.6 61.7 26.4 61.4
English-French 25.9 63.2 22.8 68.1

other systems. A detailed description of RWTH’s submission can be found in Heger
et al. (2010). The scores are computed using the official Euromatrix web interface for
machine translation evaluation2.

As can be seen the performance of Jane and Joshua is similar, but Jane generally
achieves better results in BLEU, while Joshua has an advantage in terms of TER. Hav-
ing different systems is always enriching, and particularly as system combination
shows great improvements in translation quality, having several alternative systems
can only be considered a positive situation.

7. Conclusion

In this work, we described how and where new models can be integrated into the
Jane architecture. We also reviewed the features that are currently implemented. Jane
can be downloaded from http://www.hltpr.rwth-aachen.de/jane. The toolkit is
open-source and free for non-commercial purposes. Other licenses can be negotiated
on demand. It is our hope that by adhering to strict code and documentation policies,
we enable fellow researchers to adopt and extend the toolkit easily to their needs.
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