
Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

25

Compiling Apertium morphological dictionaries with HFST and
using them in HFST applications

Tommi A Pirinen, Francis M. Tyers

University of Helsinki, Universitat d’Alacant
FI-00014 University of Helsinki Finland, E-03071 Alacant Spain

tommi.pirinen@helsinki.fi, ftyers@dlsi.ua.es

Abstract
In this paper we aim to improve interoperability and re-usability of the morphological dictionaries of Apertium machine
translation system by formulating a generic finite-state compilation formula that is implemented in HFST finite-state
system to compile Apertium dictionaries into general purpose finite-state automata. We demonstrate the use of the
resulting automaton in FST-based spell-checking system.
Keywords: finite-state, dictionary, spell-checking

1. Introduction
Finite-state automata are one of the most effective for-
mat for representing natural language morphologies
in computational format. The finite-state automata,
once compiled and optimised via process of minimisa-
tion are very effective for parsing running text. This
format is also used when running morphological dictio-
naries in machine-translation system Apertium (For-
cada et al., 2011)1. In this paper we propose a generic
compilation formula to compile the dictionaries into
weighted finite state automata for use with any FST
tool or application. We implement this system using a
free/libre open-source finite-state API HFST (Lindén
et al., 2011)2. HFST is a general purpose programming
interface using a selection of freely-available finite-
state libraries for the handling of finite-state automata.
While Apertium uses the dictionaries and the finite-
state automata for machine translation, HFST is used
in multitude of other applications ranging from ba-
sic morphological analysis (Lindén et al., 2011) to
end-user applications such as spell-checking (Pirinen
and Lindén, 2010) and predictive text-entry for mo-
bile phones (Silfverberg et al., 2011). In this article
we show how to generate automatically a spell-checker
from an Apertium dictionary and evaluate roughly the
usability of the automatically generated spell-checker.
The rest of the article is laid out as follows: In sec-
tion 2. we describe the generic compilation formula for
the HFST-based compilation of Apertium dictionaries
and the formula for induction of spell-checkers error
model from Apertium’s dictionary. In section 3. we
introduce the Apertium dictionary repository and the
specific dictionaries we use to evaluate our systems.
In section 4. we evaluate speed and memory usage
of compilation and application of our formula against
Apertium’s own system and show that our system has
roughly same coverage and explain the differences arise
from.

1http://www.apertium.org
2http://hfst.sf.net

2. Methods
The compilation of Apertium dictionaries is relatively
straight-forward. We assume here standard notations
for finite-state algebra. The morphological combina-
torics of Apertium dictionaries are defined in following
terms: There is one set of root morphs (finite strings)
and arbitrary number of named sets of affix morphs
called pardefs. Each set of affix morphs is associated
with a name. Each morph can also be associated with
a paradigm reference pointing to a named subset of af-
fixes. As an example, a language of singular and plural
of cat and dog in English would be described by root
dictionary consisting of morphs cat and dog, both of
which point on the right-hand side to pardef named
number. The number affix morphs are defined then
as set of two morphs, namely s for plural marker and
empty string for singular marker.
Each morph can be compiled into single-path finite-
state automaton3 containing the actual morph as
string of UTF-8 arcs m. The morphs in the root dic-
tionary are extended from left or right sides by joiner
markers iff they have a pardef definition there and each
affix dictionary is extended on the left (for suffixes) or
right (for prefixes) by the pardef name marker. In the
example of cats, dogs language this would mean finite
state paths c a t NUMBER, d o g NUMBER, NUMBER
s and NUMBER ε, where ε as usual marks zero-length
string4. These sets of roots and affixes can be compiled
into disjunction of such joiner delimited morphs. Now,
the morphotactics can be defined as related to joiners
by any such path that contains joiners only as pairs of
adjacent identical paradigm references, such as c a t
NUMBER NUMBER s or d o g NUMBER NUMBER ε, but not
c a t NUMBER d o g NUMBER or NUMBER s NUMBER

3the full formula allows any finite-state language as
morph, compiled from regular expressions, the extension
to this is trivial but for readability we present the formula
for string morphs

4In the current implementation we have used temporar-
ily a special non-epsilon marker as this decreases the local
indeterminism and thus compilation time



Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

26

s. The finite-state formula for this morphotactics is
defined by

Mx = (Σ ∪
∪
x∈p

xx)?, (1)

where p is set of pardef names and Σ the set of symbols
in morphs not including the set of pardef names. Now
the final dictionary is simply composition of these mor-
photactic rules over the repetion of affixes and roots:

(Ma ∪Mr)
? ◦Mx, (2)

where Ma is the disjunction of affixes with joiners, Mr

the disjunction of roots with joiners, and Mx the mor-
photactics defined in formula 1. This is a variation of
morphology compilation formula presented in various
HFST documentation, such as (Lindén et al., 2011).

2.1. Implementation Details
There are lot of finer details we will not thoroughly
cover in this article, as they are mainly engineering
details. In this section we shortly summarise specific
features of HFST-based FST compilation that result in
meaningful differences in automaton structure or work-
ing. One of the main source of differences is that HFST
automata are two-sided and compiled only ones from
the source code whereas Apertium generates two dif-
ferent automata for analysis and generation. In these
automata the structure may be different, since Aper-
tium dictionaries have ways of marking morphs limited
to generation or analysis only, so they will only be in-
cluded in one of the automatons. Our approach to this
is to use special symbols called flag-diacritics (Beesley
and Karttunen, 2003) to limit the paths as analysis
only or generation only on runtime, but still including
all paths in the one transducer that gets compiled.
Another main difference in processing comes from the
special word-initial, word-final and separate morphs
that in Apertium are contained in separate automata
altogether, but HFST tools do not support use of mul-
tiple automata for analysis, so these special morphs
will be concatenated optionally to beginning or end of
the word, or disjuncted to the final automata respec-
tively. These special morphs include things like article
l’ in French as bound form.

2.2. Creating a Spell-Checker Automatically
To create a finite-state spell-checker we need two au-
tomata, one for the language model, for which the dic-
tionary compiled as described earlier will do, and one
for the error model (Pirinen and Lindén, 2010). A
classic baseline error model is based on the edit dis-
tance algorithm (Levenshtein, 1966; Damerau, 1964),
that defines typing errors of four types: pressing extra
key (insertion), not pressing a key (deletion), pressing
wrong key (change) and pressing two keys in wrong
order (swap). There have been many finite-state for-
mulations of this, we use the one defined in (Schulz
and Mihov, 2002; Pirinen and Lindén, 2010). The ba-
sic version of this where the typing errors of each sort

have equal likelihood for each letters can be induced
from the compiled language model, and this is what we
use in this paper. The induction of this model is rel-
atively straightforward; when compiling the automa-
ton, save each unique UTF-8 codepoint found in the
morphs5. For each character generate the identities in
start and end state to model correctly typed runs. For
each of the error types the generate one arc from ini-
tial state to the end state modelling that error, except
for swap which it requires one auxiliary state for each
character pair.

3. Materials
The Apertium project hosts a large number of mor-
phological dictionaries for each of the languages trans-
lated. From these we have selected three dictionar-
ies to be tested: Basque from Basque-Spanish pair
as it is released dictionary with the biggest on-disk
size, Norwegian Nynorsk from the Norwegian pair as a
language that has some additional morphological com-
plexity, such as compounding, and Manx from as a
language that currently lacks spell-checking tools to
demonstrate the plausibility of automatic conversion
of Apertium dictionary into a spell-checker6.
To evaluate the use of resulting morpho-
logical dictionaries and spell-checkers we
use following Wikipedia database dumps7:
euwiki-20120219-pages-articles.xml.bz2,
nnwiki-20120215-pages-articles.xml.bz2, and
gvwiki-20120215-pages-articles.xml.bz2. For
the purpose of this article we performed very crude
cleanup and preprocessing to Wikipedia data picking
up the text elements of the article and discarding
most of Wikipedia markup naïvely8.

4. Test Setting and Evaluation
To get one view on differences made by generic com-
pilation formula instead of direct automata building
used by Apertium we look at the created automata,
this will also give us a rough idea of what its efficiency
might be. In table 1 we give the counts of nodes and
edges, in that order, in the graphs compiled from the
dictionaries. Note, that in case of Apertium it is the
sum of all the separate automata states and edges that
is counted. The small differences in sizes of graphs are
mostly caused by the different handling of generation
vs. analysis mode. The difference in sizes of automata
on disk in is shown in table 2. The size of HFST au-

5The description format of Apertium requires declara-
tion of exemplar character set as well, but as this is only
used in the tokenisation algorithm (Garrido-Alenda et al.,
2002) , which is not going to be used, we induce the set
from the morphs

6We also provide a Makefile script to recreate results of
this article for any language in Apertium’s repository

7http://download.wikipedia.org/
8For details see the script in http://

hfst.svn.sourceforge.net/viewvc/hfst/trunk/
lrec-2011-apertium/.



Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

27

tomata can be attributed to the clever compression al-
gorithm used by HFST (Silfverberg and Lindén, 2009).

Lang. Apertium LR Apertium RL HFST
Basq. 30,114 34,005 34,824

59,321 68,030 68,347
Norg. 56,226 55,722 56,871

138,217 132,475 139,259
Manx 13,055 12,955 12,920

28,220 27,062 27,031

Table 1: Size of HFST-based system against original
(count of nodes first, then edges)

Lang. Apertium LR Apertium RL HFST
Basq. 252 KiB 289 KiB 1,7 MiB
Norg. 558 KiB 535 KiB 3,7 MiB
Manx 108 KiB 110 KiB 709 KiB

Table 2: Size of HFST-based system against original (as
B on disk)

To test efficiency we measure times of running various
tasks. The times and memory usage have been mea-
sured using GNU time utility and getrusage system
call’s ru_utime field, averaged over three test runs.
The tests were performed on quad-core Intel Xeon
E5450 @ 3.00 GHz with 64 GiB of RAM.
First we measure speed of analysing a full corpus with
the result automaton. The speed is measured in the
table 3, in seconds to precision that was available in
our system. Curiously the results do not give direct
advantage to either of the system but it seems to de-
pend on the language which system is a better choice
for corpus analysis.

Language Apertium HFST
Basque 32.0 s 18.4 s
Norwegian 2.4 s 5.5 s
Manx 1.6 s 2.2 s

Table 3: Speed of HFST-based system against original in
corpus analysis (as s in user time)

Similarly we measure the speed of current compilation
process in table 4. In here there’s an obvious advantage
to manual building of the automaton (see (Rojas et al.,
2005) for the precise algorithm used) over the finite-
state algebra method, as is in line with earlier results
for lexc building in (Lindén et al., 2009).
Finally we evaluate the usability of dictionaries meant
for machine translation as spell-checkers by running
the finite-state spell checkers we produced automat-
ically through a large corpus and show the measure
both speed and quality of the results. The errors were
automatically generated to Wikipedia text’s correct
words using simple algorithm that may generate one

Language Apertium time HFST time
Basque 35.7 s 160.0 s
Norwegian 6.6 s 200.2 s
Manx 0.8 s 11.2 s

Table 4: Speed of HFST-based system against original in
compilation (as seconds of user time)

Levenshtein error per each character position at prob-
ability of 1

33 . This test shows only rudimentary results
on the plausibility of using machine translation dictio-
nary for spell-checking; for more thorough evaluation
of efficiency of finite-state spell-checking see (Hassan
et al., 2008).

Language Speed (words/sec)
Basque 7,900
Norwegian 9,200
Manx 4,700

Table 5: Efficiency of spelling correction in artificial test
setup, average over three runs.

5. Conclusions
In this article we have shown a general formula
to compile morphological dictionaries from machine-
translation system Apertium in generic FST system of
HFST and using the result in HFST-based application
of spell-checking.

6. Future Work
In this article we showed a basic method to gain more
inter-operability between generic FST system of HFST
and a specialised morphological dictionary writing for-
malism of machine-translation system Apertium by
implementing a generic compilation formula to com-
pile the language descriptions. In future research we
are leveraging this and other related formulas into au-
tomatic optimisation of the final automata using the
information present in the language description to op-
timise instead of relying generic graph algorithms for
the final minimised result automata.
We demonstrated importing the compiled dictionary
as a language model and inducing error model for real-
world spell-checking applications. Further develop-
ment in this direction should aim for interoperable for-
malisms, formats and mechanisms for language models
and end applications of all relevant language technol-
ogy tools.

Acknowledgements
We thank the HFST and Apertium contributors for
fruitful internet relayed chats, and the two anonymous
reviewers for their helpful suggestions.



Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

28

7. References
Kenneth R Beesley and Lauri Karttunen. 2003. Finite

State Morphology. CSLI publications.
F J Damerau. 1964. A technique for computer de-

tection and correction of spelling errors. Commun.
ACM, (7).

Mikel L. Forcada, Mireia Ginestí-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema
Ramírez-Sánchez, and Francis M. Tyers. 2011.
Apertium: a free/open-source platform for rule-
based machine translation. Machine Translation,
jul.

Alicia Garrido-Alenda, Mikel L. Forcada, and
Rafael C. Carrasco. 2002. Incremental construction
and maintenance of morphological analysers based
on augmented letter transducers. In Proceedings of
TMI 2002 (Theoretical and Methodological Issues
in Machine Translation, Keihanna/Kyoto, Japan),
pages 53–62.

Ahmed Hassan, Sara Noeman, and Hany Hassan.
2008. Language independent text correction using
finite state automata. In Proceedings of the Third
International Joint Conference on Natural Language
Processing, volume 2, pages 913–918.

V. I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. So-
viet Physics—Doklady 10, 707–710. Translated from
Doklady Akademii Nauk SSSR, pages 845–848.

Krister Lindén, Miikka Silfverberg, and Tommi Piri-
nen. 2009. Hfst tools for morphology—an efficient
open-source package for construction of morpholog-
ical analyzers. In Cerstin Mahlow and Michael Pi-
otrowski, editors, sfcm 2009, volume 41 of Lecture
Notes in Computer Science, pages 28—47. Springer.

Krister Lindén, Miikka Silfverberg, Erik Axel-
son, Sam Hardwick, and Tommi Pirinen, 2011.
HFST—Framework for Compiling and Applying
Morphologies, volume Vol. 100 of Communications
in Computer and Information Science, pages 67–85.
Springer.

Tommi A Pirinen and Krister Lindén. 2010. Finite-
state spell-checking with weighted language and er-
ror models. In Proceedings of the Seventh SaLTMiL
workshop on creation and use of basic lexical re-
sources for less-resourced languagages, pages 13–18,
Valletta, Malta.

Sergio Ortiz Rojas, Mikel L. Forcada, and
Gema Ramírez Sánchez. 2005. Construcción y
minimización eficiente de transductores de le-
tras a partir de diccionarios con paradigmas.
Procesamiento del Lenguaje Natural, (35):51–57.

Klaus Schulz and Stoyan Mihov. 2002. Fast string
correction with levenshtein-automata. International
Journal of Document Analysis and Recognition,
5:67–85.

Miikka Silfverberg and Krister Lindén. 2009. Hfst
runtime format—a compacted transducer format al-
lowing for fast lookup. In Bruce Watson, Derrick

Courie, Loek Cleophas, and Pierre Rautenbach, ed-
itors, FSMNLP 2009, 13 July.

Miikka Silfverberg, Mirka Hyvärinen, and Tommi Piri-
nen. 2011. Improving predictive entry of finnish text
messages using irc logs. pages 69–76.


