LINGUISTICS AND THE MACHINE TRANSLATION OF
NATURAL LANGUAGE TEXTS

by Richard Hudson, University College London

INTRODUCTION

I remember hearing about the promise of MT in
the days before the ALPAC report came along
like the bad fairy in The $Sleeping Beauty and
condemned it to sleep for ten years until some
Prince (who I didn't qQuite manage to identify)
came and woke her/it/them. And now there are
gsystems which are commercially viable, and the
EEC is using MT on a large scale, and so on.

My aim is to sell linguistic theory to you;
but which linguistic theory? You may well know
that the discipline of linguistics includes
some fairly importamt disputes about
fundamental thecretical matters, and if you
have a notion of what 'linguists' say about
certain matters, it is probably only what
certain linguists say. From the 0dd references
in the newletters to trees 1 suspect that at
least some of you think that linguistics =
phrase-structure grammar, or a particular
version of PSG, transformational grammar. This
is a misconception, and 1 should like to
correct it by introducing you to a lipguistic
theory which I think you will find much more
appealing and directly relevant to your work
than elther PSG or TG. It is callead ‘woid
grammar’'.

WORD GRAMMAR

1 call it 'word grammar' because the word
iz the central unit - in fact, it's the
only unit of which you would need to take
account, apart from the letters in whicn
words are written and various affires you
may identify within words. 1In particular,
you need pay no attention to phrases or
clauses - no trees, in other words. When
your computer is working out the relations
among the words in a sentence, that is
literally all it has to do: it decides nhow
one word is related to another word,
without setting up larger units to mediate
these relations. ln relation to most
modern thecries of linguistics, this is a
heretical position to take, bot in fact it
is just a return to the two-thousand year
0ld grammatical tradition enshrined in
most school grammars {and alse in various
European branches of what is called

‘dependency theory', which flourishes in
particular in West Germany and the USSR}.
So if you learned some grammar at school,
and if this is what you have been using to
guide your thinking in MI, you should find
the leap to word grammar a very small leap.

Let me give you an example of what 1 mean
by *the relations between words'. The
primary relation of syntax, according to
word grammar, is dependency ~ the relation
between a *head’ wotd and its 'modifier’.
For example, Ian Pigott (Newsletter 10,
1961) lists the following word-pairs:
subiject-verb, verb-object, noun
modifier-noun modified, adjective-noun,
adverb-verb, preposition-object. These are
all examples of modifier-head pairs,
though the decision as to which is head
and which modifier is a theoretical
question which may lead to unexpected
answers in some cases. In the diagram
below, 1 take the last part of the last
sentence in the previous paragraph, and
show the dependency relations among its
words, The arrows point from the head to
the modifier in each modifier-head pair.

NN

You should find the leap to word grammar a very small lesp

What you should be interested in is whether
the structures generated reflect the actual
structure of the sentence - in other words
whether they reflect the structures which a
human mind constructs in processing the
sentence. If they do, then it should be
easy to relate them to the sentence's
semantic structure, because that is
presumably how human processors arrive at
the semantic structure. I believe this is
the case for the structure given above for
the example. For instance, you is connected
both to should and to fipd. The latter
connection is essential for identifying
‘you' as the person in whose head the
opinion tor 'finding'} is located, but the
connection between you and should is needed
in order to link you to find (Decause the
subject of should is always the same as the
subject of the following infinitive}.

You have a choice of notations for
expressing the same information, and the
notation 1 tend to use when working out
bits of the grammar would be much easier
for you to use. It is based on formulaic

statements, which are formulated in terms
of a notation which I think someone once
told me is similar to the notation of LISP.
Be that as it may, 1 hope it would be easy
to implement in some computer language. If
you want to say that word n is a modifier
of word m, then the formuls you need is:
modifier{m}: n. More generally, each
formula consists of a labelled slot {e.g.
‘modifier'}, then an entity in brackets
which identifies the ‘ownet' of the
property denoted by the label, and which
can be put into prose as 'of'; then
comes a colon, to be verbalised as 'is',
and lastly some entity (or @, standing
for zero}), which is the filler of the slot.
This notation can be uvsed not only in
describing the structure of a sentence
which the grammar generates, but also for
formulating the rules of the grammar., The
only ditference between the two is that the
former are more specific in their reference
than the lattet. For instance, the word
leap occurs twice in our example string,
but in each case it is an instance of the
same general entity in the grammar, the
word (or lexical item) leap. Baturally we
have to distinguish these different
entities from one another, sco 1 use nombers
as names for the words in a sentence, and
the ordinary spelling, underlined, for the
word as an entity in the grammar. Before I
show how we can use formulae instead of the
arrows of the dependency structure, let me
deal with a more straightforwaro matter:
the internal composition, in terms of
letters, of the words. 1n the grammar we
find this formula:

[EN] compositionileap): 1 e a p

And in the sentence structure generated, we
find this, in which 5 stands for the first
instance of leap:

(2) composition(5): 1 e a p.

This pair of formulae shows how the
structures of grammar and of
sentence-structure are different only in
speciticity.

The way in which the human user of & word
grammar makes use of the information in the
grammar when processing a sentence is to
fipd at least one model in the grammar for
each word in the sentence, All this
regquires is a direct comparison between the
known propérties of the ward in the
sentence, and the listed properties of

words in the grammar. Except for
komographs, this will take us straight from
the spelling of a word to 2 wnigue word in
the grammar; but in the case of homographs,
we need to take account 0f other known
properties of the sentence-word, such as
the kKina of word we should expect it to be
on the basis of the words before it. For
example, our first leap occuts straight
atter the, and as soon as we see thig word
we start looking for a noun, 50 the easiest
assumption is that leap is itself a noun.
we have found a word in the sentence whose
compoesition is 1 € a p, 50 we look through
the grammar for a word whose composition is
also the same; and if we find more than
one, we take account of more and more known
information until we can eliminate all but
one of them. This is the 'modeil' for our
word in the sentence, so we can now add a
further bit of information to the analysis
of the sentence.

(3 model (5}: leap.

But by adding formula (3) to (2), which is
the input to the system, we are opening the
flood-gates for a whole collection of other
formulae, namely all the formulae which
involve the grammar-wora leap. In other
words, we start from the Known properties
of an entity, then we find its model in ocur
stored knowledge, and then we assume that
it has all the properties of this stored
entity, including many which we cannot
*know' in any other way. In the case of
leap, this means that we gain access to its
meaning, which we can represent simply as
LEAP for the time being, and to its
syntactic classification as a noun. So we
add formulae (4) and (5) to the two we
already have for word 5:

(4) referent {5): LEAP
(5) model (5): noun.

The two formulae are simply copied directly

from the formulae containing leap, with the
substitution of 5 for leap.

I said that the only difference between the
formalae found in grammars and in
sentence-structures is in the specificity
of the entities to which they refer; this
point has already been illustrated, because
the word 5 is by definition more specific
than the word leap, because the former
takes the latter as its model ~ in other
wotds, the foriher is an instance of the

latter, The entities referred to in a
granmar-formula can be guite vaguely
specified, and typically they are
tepresented by some variable, which may or
may not have conditlions attached to at,

For instance, we can improve on the formula
given in (4) for the meaning of leap, by
reptesenting the referent of the word
simply as leap* (a useful convention, as we
shall see), and then requiting it to be an
instance of the general concept LEAP. We
simply tag conditions onto the formula,
with a comma before them, g0 the formula
for the meaning of the grammar-entity leap
would be like this:

{6} referent(leap): leap*, model {(leap*):LEAP

This telle us that if the word leap is used,
the thing to wnich it refers must be an
instance of & leap, but of course it does not
tell us what particular instance of leaping
the word refers to, because leap is a common
noun, not a propet noun.

This last formula is the beginnings of a
semantic structure for leap, and a fuller
analysis would include an analysis of the
structure of the concept LEAP. The guestion of
how much of this structure to analyse is an
entirely pragmatic one, as 1 happen to be one
of those linguists who finds no natural
boundary arcound the 'truly linguistic' - in
our minds, the linguistic meshes inextricably
with our total knowledge of the world. For
instance, you may find it helpful to take the
analysis up to the model for LEAP, which is
“(arguably) MOVEMEWNT. This much analysis would
be helpful in eliminating some ambiguities,
but more importantly it would allow us to
explain the semantic connections between
words, as 1 shall explain shortly. For
example, it is probably important to show that
in the phrase the leap to word grammar, to
word grammar expresses the direction of
tmetaphorical, or mental) movement, in order
to select the rignt translation eguivalent in
the target language {in conttacst, say, with
the key 10 the door).

We can now pick up again the guestion of
analysing the relations between the words in a
sentence., I take it that the bit of the
grammar which deals with leap as such gives no
specific information about its possible
relations to other words, because it is just a
tyrical noun, and follows all the normal rules
for wsing nouns in relation to other words. So
having identified leap as the medel for word
5, we haven't actually learned anything

directly about its relations to other words in
our sentence; but we have been able to add
formula (5), model{5j: noun, because 5 simply
inherite all the properties of leegp, and leap
is an instance of 'noun'. Consegquently word 5
alsg inherits 2ll the properties of ‘noun’, as
well as those of leap, including &ll the
information which grammacrs tend to include in
their 'rules', in contrast with the lexical
items which are in the other part of the
grammar, cailed the 'lexicon'.

Linguists use ‘grammar’ to include the
dictionary or lexicon of the language
concerned, as well as the general rules.
Rowever, there is an important matter of
principle at stake as well, because word
grammar uses jus% the same format - again,
formulae of the kind I have described - for
expressing information about specific words
{'lexical' information) and for expressing
more general items of infermatien which apply
to whole classes of words, and which are often
called ‘'rules'. This blurring of the
distinction between lexical items and rules
allows the coperation of a language-processor
to be very simple, and to involve nothing but
‘instantiation' - i.e. the identification angd
exploitation of models, Just as we took leap
as a model for word 5, and added all the
storea properties of jeap to the known {i.e.
observed) properties of word 5, s0 we can take
'noun' as the medel for leap, and add to the
latter all the stored properties for nouns in
general. The same process extends to
semantics as well - we take the referent of 5,
represented as 5*, as an instance of the
referent of leap, leap*, which in turn is an
instance of LEAP {(and inherits any stoted
ptopetties of LEAP); and LEAP is itself an
instance of MOVEMERT, so it automatically
inherits the latter's stored properties. 1
take it that this uniform mode of operation
for a lanquage processor is an attraction for
a computational linguist.

what kind of information, then, should &
grammar give about '‘noun'? Before we come to
information about syntactic relations to other
words, 1 should mention that information about
reqular inflections would be attached to more
deneral entities, such ag 'noun' or 'plural
noun'. I know that inflections are of great
practical interest to machine-translators. The
other main kind of information is about
relations to other words, and can all be given
in terms of dependency telations, using the
terms *head' and *modifier' as I explained
them earlier.

The most useful piece of information wnich is
made available at this level is probably that
every houn needs a head. (I take it that cases
jike chapter-headings, lists and captions can
be coped with by some extra condition.) 5¢ as
500N 2% you encounter a noun, you can start .
looking for its head. If you are lucky, you
will find that on your 'work-space’ you will
already have some word which needs 2 noun as
its modifier, and you can introduceé the two
words to one another and satisfy them both.
For example, the verb find requires at least
one modifier after it, and one of the things
which this modifier is allowed to be {by the
specific reguirements of find) is a noun; so
when you meet the word leap, and take it as a
noun, you immediately have a potential head
for it. {(Actually, the analysis takes the as
head of leap, but the is & noun according to
my grammar, and it takes a noun as its
modifiec, so the same principle applies.)
However, you may find a noun without already
having a potential head, as with you at the
start of the string you should find In
this case, you keep a hote of the need for a
head for this word, and go on processing. If
you come to a full-stop, and still haven't
found a head for your noun, then you KRow you
must have made a mistake, and you or your
computer has to go back and rry another
analysis.

Anotner piece of information about nouns is
that they may take any number of words such as
prepesitions after them, subject to the
condition that each such word must make some
contribution to the semantic structure. What
kind of contribution this can be will depend
on the semantic structure of the particular
noun concerned; for example, a preposition
could express the direction of movement if the
noun is one like leap, but not if it is the
name of an object such as sausage. The formula
for this is:

{7} modifier B(noun): x, model{x}z...or
preposition, X{...noun*): x*,

In words, any of the n modifiers of a noun
{where 0<n) is some word x, whose model may

be 'preposition® {inter alia}, and whose
referent x* filles some slot X in the semantic¢
structure of the referent of the noun itself,
noun*. Thus, whenever you find a noun, you can
tentatively open up at least one modifier
slot, in case you find a potential filler for
it later in the sentence; but of course if you
reach a Full-stop without finding one, you
simply close the slots, rather than assuming
that you have made a mistake. In the case of

leap to word grammar, you can immediately £ill
the modifier slot by to, and start working on
the latter's semantics but some sentences need
a modifier sict to be filled after
considerable delay (e.g. Examples ate not hard
to find of the kind of sentence I have 1in
ming.) .

Thus, by putting together the various bits of
information relevant tec inter-word relations
in the grammar, we can srrive at a2 coherent
dependency structure for a string of words.
Some of this information comes from the
general entries in the grammar relevant to
entities like 'noun', some of it comes from
specific entries for particular lexical items,
such as find; some of it is expressed in terms
of syntax, some in terms of semantics, and
some involves the relations between syntax and
gsemantics, What the grammar-user has to do is
to juggle the various bits of information
which are potentially relevant in order to
find a way of making them fit together. Of
course, it is possible that this juggling
trick should be performed in a different way
by the human and the computer; for example, it
is likely that the human will be able to
muster much more contextual and real-world
information than computers will be able to for
some time to come, so computers may be able to
make vp for this by moving backwards and
forwards in the sentence building up
specifically syntactic structures before they
start exploiting semantic structures. 1 have
the impression that this is already happening.

The formulae for the first occurrence of leap
in our example string would thues be as follows:

(&) head(5}: 3
{9) modifier{5): 6
(10) direction(5*): 6*

These formulae link word 5 to word 3 (find)
and 6 (to), and similar formulae would be
responsible for handling all the other
inter-word links which are shown in my earlier
diagram. As 1 said there, these links provide
an important step from the uninterpreted
string of words to a usable semantic
structure.

What I have to offer is a theory of grammar,
which has already been applied in some detail
to English, so the chore of working up all the
missing details would take time and a certain
amount ot descriptive skill, but shouldn't
taise many major theoretical preoblems. In this

REFERENCES

theory, a grammar is all about words, and
consiste of a large number of formulae, each
cf which expresses some proposition to do with
some word or type of word, It is a completely
static description ot the structures that
words can have when they occut in strings; it
doesn't contain any specific recommendations
for finding the structure of a particular
string, but the structure of the grammar is
based on the relations between instances and
their models, which is precisely the trelaticn
which you are seeking when you are trying to
interpret a string of words.

Consequently I think it is guite reasonable to
think that word grammar should be a good basis
for the decoding activities of &2
machine-translator. You know the meaning, so
you look for a word with the right meaning,
and take that as a2 model for the word you
need: and the rest of the information, about
its spelliing and its syntax, will be supplied
by the formulae relevant to this word and to
its models. No doubt I'm naively missing some
Eundamental problems which computational
linguists will all very kindly point out to
me; but that's the obvious way to set about
MT, and 1 can see nothing at least in my
experience as a linguist which would suggest
that it was the wrong way.

Hudson, R A {1982) Word grammar. Preprints of
the Plenary Sessions of the l3th International
Linguistics Congress, Tokyo.

------ (1983) Towards a cognitive
linguistics, Working Papers of the London
Psycholinguistics Research Growp, &

...... {1964) Word Grammaf. Oxford:
Blackwell

