@inproceedings{xia-etal-2015-une,
title = "Une m{\'e}thode discriminant formation simple pour la traduction automatique avec Grands Caract{\'e}ristiques",
author = "Xia, Tian and
Zhai, Shaodan and
Li, Zhongliang and
Wang, Shaojun",
editor = "Lecarpentier, Jean-Marc and
Lucas, Nadine",
booktitle = "Actes de la 22e conf{\'e}rence sur le Traitement Automatique des Langues Naturelles. Articles courts",
month = jun,
year = "2015",
address = "Caen, France",
publisher = "ATALA",
url = "https://aclanthology.org/2015.jeptalnrecital-court.1",
pages = "1--6",
abstract = "Marge infus{\'e} algorithmes d{\'e}tendus (MIRAS) dominent mod{\`e}le de tuning dans la traduction automatique statistique dans le cas des grandes caract{\'e}ristiques de l{'}{\'e}chelle, mais ils sont {\'e}galement c{\'e}l{\`e}bres pour la complexit{\'e} de mise en {\oe}uvre. Nous introduisons une nouvelle m{\'e}thode, qui concerne une liste des N meilleures comme une permutation et minimise la perte Plackett-Luce de permutations rez-de-v{\'e}rit{\'e}. Des exp{\'e}riences avec des caract{\'e}ristiques {\`a} grande {\'e}chelle d{\'e}montrent que, la nouvelle m{\'e}thode est plus robuste que MERT ; si ce est seulement {\`a} rattacher avec Miras, il a un avantage comparativement, plus facile {\`a} mettre en {\oe}uvre.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xia-etal-2015-une">
<titleInfo>
<title>Une méthode discriminant formation simple pour la traduction automatique avec Grands Caractéristiques</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tian</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaodan</namePart>
<namePart type="family">Zhai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongliang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaojun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2015-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean-Marc</namePart>
<namePart type="family">Lecarpentier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadine</namePart>
<namePart type="family">Lucas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA</publisher>
<place>
<placeTerm type="text">Caen, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Marge infusé algorithmes détendus (MIRAS) dominent modèle de tuning dans la traduction automatique statistique dans le cas des grandes caractéristiques de l’échelle, mais ils sont également célèbres pour la complexité de mise en øeuvre. Nous introduisons une nouvelle méthode, qui concerne une liste des N meilleures comme une permutation et minimise la perte Plackett-Luce de permutations rez-de-vérité. Des expériences avec des caractéristiques à grande échelle démontrent que, la nouvelle méthode est plus robuste que MERT ; si ce est seulement à rattacher avec Miras, il a un avantage comparativement, plus facile à mettre en øeuvre.</abstract>
<identifier type="citekey">xia-etal-2015-une</identifier>
<location>
<url>https://aclanthology.org/2015.jeptalnrecital-court.1</url>
</location>
<part>
<date>2015-06</date>
<extent unit="page">
<start>1</start>
<end>6</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Une méthode discriminant formation simple pour la traduction automatique avec Grands Caractéristiques
%A Xia, Tian
%A Zhai, Shaodan
%A Li, Zhongliang
%A Wang, Shaojun
%Y Lecarpentier, Jean-Marc
%Y Lucas, Nadine
%S Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts
%D 2015
%8 June
%I ATALA
%C Caen, France
%F xia-etal-2015-une
%X Marge infusé algorithmes détendus (MIRAS) dominent modèle de tuning dans la traduction automatique statistique dans le cas des grandes caractéristiques de l’échelle, mais ils sont également célèbres pour la complexité de mise en øeuvre. Nous introduisons une nouvelle méthode, qui concerne une liste des N meilleures comme une permutation et minimise la perte Plackett-Luce de permutations rez-de-vérité. Des expériences avec des caractéristiques à grande échelle démontrent que, la nouvelle méthode est plus robuste que MERT ; si ce est seulement à rattacher avec Miras, il a un avantage comparativement, plus facile à mettre en øeuvre.
%U https://aclanthology.org/2015.jeptalnrecital-court.1
%P 1-6
Markdown (Informal)
[Une méthode discriminant formation simple pour la traduction automatique avec Grands Caractéristiques](https://aclanthology.org/2015.jeptalnrecital-court.1) (Xia et al., JEP/TALN/RECITAL 2015)
ACL