@inproceedings{boudin-etal-2020-keyphrase,
title = "Keyphrase Generation for Scientific Document Retrieval",
author = "Boudin, Florian and
Gallina, Ygor and
Aizawa, Akiko",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.105",
doi = "10.18653/v1/2020.acl-main.105",
pages = "1118--1126",
abstract = "Sequence-to-sequence models have lead to significant progress in keyphrase generation, but it remains unknown whether they are reliable enough to be beneficial for document retrieval. This study provides empirical evidence that such models can significantly improve retrieval performance, and introduces a new extrinsic evaluation framework that allows for a better understanding of the limitations of keyphrase generation models. Using this framework, we point out and discuss the difficulties encountered with supplementing documents with -not present in text- keyphrases, and generalizing models across domains. Our code is available at \url{https://github.com/boudinfl/ir-using-kg}",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="boudin-etal-2020-keyphrase">
<titleInfo>
<title>Keyphrase Generation for Scientific Document Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Florian</namePart>
<namePart type="family">Boudin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ygor</namePart>
<namePart type="family">Gallina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akiko</namePart>
<namePart type="family">Aizawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sequence-to-sequence models have lead to significant progress in keyphrase generation, but it remains unknown whether they are reliable enough to be beneficial for document retrieval. This study provides empirical evidence that such models can significantly improve retrieval performance, and introduces a new extrinsic evaluation framework that allows for a better understanding of the limitations of keyphrase generation models. Using this framework, we point out and discuss the difficulties encountered with supplementing documents with -not present in text- keyphrases, and generalizing models across domains. Our code is available at https://github.com/boudinfl/ir-using-kg</abstract>
<identifier type="citekey">boudin-etal-2020-keyphrase</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.105</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.105</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>1118</start>
<end>1126</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Keyphrase Generation for Scientific Document Retrieval
%A Boudin, Florian
%A Gallina, Ygor
%A Aizawa, Akiko
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F boudin-etal-2020-keyphrase
%X Sequence-to-sequence models have lead to significant progress in keyphrase generation, but it remains unknown whether they are reliable enough to be beneficial for document retrieval. This study provides empirical evidence that such models can significantly improve retrieval performance, and introduces a new extrinsic evaluation framework that allows for a better understanding of the limitations of keyphrase generation models. Using this framework, we point out and discuss the difficulties encountered with supplementing documents with -not present in text- keyphrases, and generalizing models across domains. Our code is available at https://github.com/boudinfl/ir-using-kg
%R 10.18653/v1/2020.acl-main.105
%U https://aclanthology.org/2020.acl-main.105
%U https://doi.org/10.18653/v1/2020.acl-main.105
%P 1118-1126
Markdown (Informal)
[Keyphrase Generation for Scientific Document Retrieval](https://aclanthology.org/2020.acl-main.105) (Boudin et al., ACL 2020)
ACL