@inproceedings{morio-etal-2020-towards,
title = "Towards Better Non-Tree Argument Mining: Proposition-Level Biaffine Parsing with Task-Specific Parameterization",
author = "Morio, Gaku and
Ozaki, Hiroaki and
Morishita, Terufumi and
Koreeda, Yuta and
Yanai, Kohsuke",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.298",
doi = "10.18653/v1/2020.acl-main.298",
pages = "3259--3266",
abstract = "State-of-the-art argument mining studies have advanced the techniques for predicting argument structures. However, the technology for capturing non-tree-structured arguments is still in its infancy. In this paper, we focus on non-tree argument mining with a neural model. We jointly predict proposition types and edges between propositions. Our proposed model incorporates (i) task-specific parameterization (TSP) that effectively encodes a sequence of propositions and (ii) a proposition-level biaffine attention (PLBA) that can predict a non-tree argument consisting of edges. Experimental results show that both TSP and PLBA boost edge prediction performance compared to baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morio-etal-2020-towards">
<titleInfo>
<title>Towards Better Non-Tree Argument Mining: Proposition-Level Biaffine Parsing with Task-Specific Parameterization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gaku</namePart>
<namePart type="family">Morio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Ozaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Terufumi</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuta</namePart>
<namePart type="family">Koreeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kohsuke</namePart>
<namePart type="family">Yanai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>State-of-the-art argument mining studies have advanced the techniques for predicting argument structures. However, the technology for capturing non-tree-structured arguments is still in its infancy. In this paper, we focus on non-tree argument mining with a neural model. We jointly predict proposition types and edges between propositions. Our proposed model incorporates (i) task-specific parameterization (TSP) that effectively encodes a sequence of propositions and (ii) a proposition-level biaffine attention (PLBA) that can predict a non-tree argument consisting of edges. Experimental results show that both TSP and PLBA boost edge prediction performance compared to baselines.</abstract>
<identifier type="citekey">morio-etal-2020-towards</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.298</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.298</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>3259</start>
<end>3266</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Better Non-Tree Argument Mining: Proposition-Level Biaffine Parsing with Task-Specific Parameterization
%A Morio, Gaku
%A Ozaki, Hiroaki
%A Morishita, Terufumi
%A Koreeda, Yuta
%A Yanai, Kohsuke
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F morio-etal-2020-towards
%X State-of-the-art argument mining studies have advanced the techniques for predicting argument structures. However, the technology for capturing non-tree-structured arguments is still in its infancy. In this paper, we focus on non-tree argument mining with a neural model. We jointly predict proposition types and edges between propositions. Our proposed model incorporates (i) task-specific parameterization (TSP) that effectively encodes a sequence of propositions and (ii) a proposition-level biaffine attention (PLBA) that can predict a non-tree argument consisting of edges. Experimental results show that both TSP and PLBA boost edge prediction performance compared to baselines.
%R 10.18653/v1/2020.acl-main.298
%U https://aclanthology.org/2020.acl-main.298
%U https://doi.org/10.18653/v1/2020.acl-main.298
%P 3259-3266
Markdown (Informal)
[Towards Better Non-Tree Argument Mining: Proposition-Level Biaffine Parsing with Task-Specific Parameterization](https://aclanthology.org/2020.acl-main.298) (Morio et al., ACL 2020)
ACL