@inproceedings{zhang-nie-2020-inducing,
title = "Inducing Grammar from Long Short-Term Memory Networks by Shapley Decomposition",
author = "Zhang, Yuhui and
Nie, Allen",
editor = "Rijhwani, Shruti and
Liu, Jiangming and
Wang, Yizhong and
Dror, Rotem",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-srw.40",
doi = "10.18653/v1/2020.acl-srw.40",
pages = "299--305",
abstract = "The principle of compositionality has deep roots in linguistics: the meaning of an expression is determined by its structure and the meanings of its constituents. However, modern neural network models such as long short-term memory network process expressions in a linear fashion and do not seem to incorporate more complex compositional patterns. In this work, we show that we can explicitly induce grammar by tracing the computational process of a long short-term memory network. We show: (i) the multiplicative nature of long short-term memory network allows complex interaction beyond sequential linear combination; (ii) we can generate compositional trees from the network without external linguistic knowledge; (iii) we evaluate the syntactic difference between the generated trees, randomly generated trees and gold reference trees produced by constituency parsers; (iv) we evaluate whether the generated trees contain the rich semantic information.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-nie-2020-inducing">
<titleInfo>
<title>Inducing Grammar from Long Short-Term Memory Networks by Shapley Decomposition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuhui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Allen</namePart>
<namePart type="family">Nie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shruti</namePart>
<namePart type="family">Rijhwani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yizhong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rotem</namePart>
<namePart type="family">Dror</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The principle of compositionality has deep roots in linguistics: the meaning of an expression is determined by its structure and the meanings of its constituents. However, modern neural network models such as long short-term memory network process expressions in a linear fashion and do not seem to incorporate more complex compositional patterns. In this work, we show that we can explicitly induce grammar by tracing the computational process of a long short-term memory network. We show: (i) the multiplicative nature of long short-term memory network allows complex interaction beyond sequential linear combination; (ii) we can generate compositional trees from the network without external linguistic knowledge; (iii) we evaluate the syntactic difference between the generated trees, randomly generated trees and gold reference trees produced by constituency parsers; (iv) we evaluate whether the generated trees contain the rich semantic information.</abstract>
<identifier type="citekey">zhang-nie-2020-inducing</identifier>
<identifier type="doi">10.18653/v1/2020.acl-srw.40</identifier>
<location>
<url>https://aclanthology.org/2020.acl-srw.40</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>299</start>
<end>305</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inducing Grammar from Long Short-Term Memory Networks by Shapley Decomposition
%A Zhang, Yuhui
%A Nie, Allen
%Y Rijhwani, Shruti
%Y Liu, Jiangming
%Y Wang, Yizhong
%Y Dror, Rotem
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F zhang-nie-2020-inducing
%X The principle of compositionality has deep roots in linguistics: the meaning of an expression is determined by its structure and the meanings of its constituents. However, modern neural network models such as long short-term memory network process expressions in a linear fashion and do not seem to incorporate more complex compositional patterns. In this work, we show that we can explicitly induce grammar by tracing the computational process of a long short-term memory network. We show: (i) the multiplicative nature of long short-term memory network allows complex interaction beyond sequential linear combination; (ii) we can generate compositional trees from the network without external linguistic knowledge; (iii) we evaluate the syntactic difference between the generated trees, randomly generated trees and gold reference trees produced by constituency parsers; (iv) we evaluate whether the generated trees contain the rich semantic information.
%R 10.18653/v1/2020.acl-srw.40
%U https://aclanthology.org/2020.acl-srw.40
%U https://doi.org/10.18653/v1/2020.acl-srw.40
%P 299-305
Markdown (Informal)
[Inducing Grammar from Long Short-Term Memory Networks by Shapley Decomposition](https://aclanthology.org/2020.acl-srw.40) (Zhang & Nie, ACL 2020)
ACL