@inproceedings{keesing-etal-2020-convolutional,
title = "Convolutional and Recurrent Neural Networks for Spoken Emotion Recognition",
author = "Keesing, Aaron and
Watson, Ian and
Witbrock, Michael",
editor = "Kim, Maria and
Beck, Daniel and
Mistica, Meladel",
booktitle = "Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association",
month = dec,
year = "2020",
address = "Virtual Workshop",
publisher = "Australasian Language Technology Association",
url = "https://aclanthology.org/2020.alta-1.13",
pages = "104--109",
abstract = "We test four models proposed in the speech emotion recognition (SER) literature on 15 public and academic licensed datasets in speaker-independent cross-validation. Results indicate differences in the performance of the models which is partly dependent on the dataset and features used. We also show that a standard utterance-level feature set still performs competitively with neural models on some datasets. This work serves as a starting point for future model comparisons, in addition to open-sourcing the testing code.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="keesing-etal-2020-convolutional">
<titleInfo>
<title>Convolutional and Recurrent Neural Networks for Spoken Emotion Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Keesing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ian</namePart>
<namePart type="family">Watson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Witbrock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Beck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meladel</namePart>
<namePart type="family">Mistica</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Australasian Language Technology Association</publisher>
<place>
<placeTerm type="text">Virtual Workshop</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We test four models proposed in the speech emotion recognition (SER) literature on 15 public and academic licensed datasets in speaker-independent cross-validation. Results indicate differences in the performance of the models which is partly dependent on the dataset and features used. We also show that a standard utterance-level feature set still performs competitively with neural models on some datasets. This work serves as a starting point for future model comparisons, in addition to open-sourcing the testing code.</abstract>
<identifier type="citekey">keesing-etal-2020-convolutional</identifier>
<location>
<url>https://aclanthology.org/2020.alta-1.13</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>104</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Convolutional and Recurrent Neural Networks for Spoken Emotion Recognition
%A Keesing, Aaron
%A Watson, Ian
%A Witbrock, Michael
%Y Kim, Maria
%Y Beck, Daniel
%Y Mistica, Meladel
%S Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association
%D 2020
%8 December
%I Australasian Language Technology Association
%C Virtual Workshop
%F keesing-etal-2020-convolutional
%X We test four models proposed in the speech emotion recognition (SER) literature on 15 public and academic licensed datasets in speaker-independent cross-validation. Results indicate differences in the performance of the models which is partly dependent on the dataset and features used. We also show that a standard utterance-level feature set still performs competitively with neural models on some datasets. This work serves as a starting point for future model comparisons, in addition to open-sourcing the testing code.
%U https://aclanthology.org/2020.alta-1.13
%P 104-109
Markdown (Informal)
[Convolutional and Recurrent Neural Networks for Spoken Emotion Recognition](https://aclanthology.org/2020.alta-1.13) (Keesing et al., ALTA 2020)
ACL