@inproceedings{lepori-2020-unequal,
title = "Unequal Representations: Analyzing Intersectional Biases in Word Embeddings Using Representational Similarity Analysis",
author = "Lepori, Michael",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.151",
doi = "10.18653/v1/2020.coling-main.151",
pages = "1720--1728",
abstract = "We present a new approach for detecting human-like social biases in word embeddings using representational similarity analysis. Specifically, we probe contextualized and non-contextualized embeddings for evidence of intersectional biases against Black women. We show that these embeddings represent Black women as simultaneously less feminine than White women, and less Black than Black men. This finding aligns with intersectionality theory, which argues that multiple identity categories (such as race or sex) layer on top of each other in order to create unique modes of discrimination that are not shared by any individual category.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lepori-2020-unequal">
<titleInfo>
<title>Unequal Representations: Analyzing Intersectional Biases in Word Embeddings Using Representational Similarity Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Lepori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new approach for detecting human-like social biases in word embeddings using representational similarity analysis. Specifically, we probe contextualized and non-contextualized embeddings for evidence of intersectional biases against Black women. We show that these embeddings represent Black women as simultaneously less feminine than White women, and less Black than Black men. This finding aligns with intersectionality theory, which argues that multiple identity categories (such as race or sex) layer on top of each other in order to create unique modes of discrimination that are not shared by any individual category.</abstract>
<identifier type="citekey">lepori-2020-unequal</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.151</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.151</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1720</start>
<end>1728</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unequal Representations: Analyzing Intersectional Biases in Word Embeddings Using Representational Similarity Analysis
%A Lepori, Michael
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F lepori-2020-unequal
%X We present a new approach for detecting human-like social biases in word embeddings using representational similarity analysis. Specifically, we probe contextualized and non-contextualized embeddings for evidence of intersectional biases against Black women. We show that these embeddings represent Black women as simultaneously less feminine than White women, and less Black than Black men. This finding aligns with intersectionality theory, which argues that multiple identity categories (such as race or sex) layer on top of each other in order to create unique modes of discrimination that are not shared by any individual category.
%R 10.18653/v1/2020.coling-main.151
%U https://aclanthology.org/2020.coling-main.151
%U https://doi.org/10.18653/v1/2020.coling-main.151
%P 1720-1728
Markdown (Informal)
[Unequal Representations: Analyzing Intersectional Biases in Word Embeddings Using Representational Similarity Analysis](https://aclanthology.org/2020.coling-main.151) (Lepori, COLING 2020)
ACL