@inproceedings{tuc-can-2020-self,
title = "Self Attended Stack-Pointer Networks for Learning Long Term Dependencies",
author = "Tuc, Salih and
Can, Burcu",
editor = "Bhattacharyya, Pushpak and
Sharma, Dipti Misra and
Sangal, Rajeev",
booktitle = "Proceedings of the 17th International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2020",
address = "Indian Institute of Technology Patna, Patna, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2020.icon-main.12",
pages = "90--100",
abstract = "We propose a novel deep neural architecture for dependency parsing, which is built upon a Transformer Encoder (Vaswani et al. 2017) and a Stack Pointer Network (Ma et al. 2018). We first encode each sentence using a Transformer Network and then the dependency graph is generated by a Stack Pointer Network by selecting the head of each word in the sentence through a head selection process. We evaluate our model on Turkish and English treebanks. The results show that our trasformer-based model learns long term dependencies efficiently compared to sequential models such as recurrent neural networks. Our self attended stack pointer network improves UAS score around 6{\%} upon the LSTM based stack pointer (Ma et al. 2018) for Turkish sentences with a length of more than 20 words.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tuc-can-2020-self">
<titleInfo>
<title>Self Attended Stack-Pointer Networks for Learning Long Term Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salih</namePart>
<namePart type="family">Tuc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Burcu</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipti</namePart>
<namePart type="given">Misra</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajeev</namePart>
<namePart type="family">Sangal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">Indian Institute of Technology Patna, Patna, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel deep neural architecture for dependency parsing, which is built upon a Transformer Encoder (Vaswani et al. 2017) and a Stack Pointer Network (Ma et al. 2018). We first encode each sentence using a Transformer Network and then the dependency graph is generated by a Stack Pointer Network by selecting the head of each word in the sentence through a head selection process. We evaluate our model on Turkish and English treebanks. The results show that our trasformer-based model learns long term dependencies efficiently compared to sequential models such as recurrent neural networks. Our self attended stack pointer network improves UAS score around 6% upon the LSTM based stack pointer (Ma et al. 2018) for Turkish sentences with a length of more than 20 words.</abstract>
<identifier type="citekey">tuc-can-2020-self</identifier>
<location>
<url>https://aclanthology.org/2020.icon-main.12</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>90</start>
<end>100</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self Attended Stack-Pointer Networks for Learning Long Term Dependencies
%A Tuc, Salih
%A Can, Burcu
%Y Bhattacharyya, Pushpak
%Y Sharma, Dipti Misra
%Y Sangal, Rajeev
%S Proceedings of the 17th International Conference on Natural Language Processing (ICON)
%D 2020
%8 December
%I NLP Association of India (NLPAI)
%C Indian Institute of Technology Patna, Patna, India
%F tuc-can-2020-self
%X We propose a novel deep neural architecture for dependency parsing, which is built upon a Transformer Encoder (Vaswani et al. 2017) and a Stack Pointer Network (Ma et al. 2018). We first encode each sentence using a Transformer Network and then the dependency graph is generated by a Stack Pointer Network by selecting the head of each word in the sentence through a head selection process. We evaluate our model on Turkish and English treebanks. The results show that our trasformer-based model learns long term dependencies efficiently compared to sequential models such as recurrent neural networks. Our self attended stack pointer network improves UAS score around 6% upon the LSTM based stack pointer (Ma et al. 2018) for Turkish sentences with a length of more than 20 words.
%U https://aclanthology.org/2020.icon-main.12
%P 90-100
Markdown (Informal)
[Self Attended Stack-Pointer Networks for Learning Long Term Dependencies](https://aclanthology.org/2020.icon-main.12) (Tuc & Can, ICON 2020)
ACL