@inproceedings{shivnikar-etal-2020-character,
title = "A character representation enhanced on-device Intent Classification",
author = "Shivnikar, Sudeep Deepak and
Arora, Himanshu and
B S S, Harichandana",
editor = "S, Praveen Kumar G and
Mukherjee, Siddhartha and
Samal, Ranjan",
booktitle = "Proceedings of the Workshop on Joint NLP Modelling for Conversational AI @ ICON 2020",
month = dec,
year = "2020",
address = "Patna, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2020.icon-workshop.6",
pages = "40--46",
abstract = "Intent classification is an important task in natural language understanding systems. Existing approaches have achieved perfect scores on the benchmark datasets. However they are not suitable for deployment on low-resource devices like mobiles, tablets, etc. due to their massive model size. Therefore, in this paper, we present a novel light-weight architecture for intent classification that can run efficiently on a device. We use character features to enrich the word representation. Our experiments prove that our proposed model outperforms existing approaches and achieves state-of-the-art results on benchmark datasets. We also report that our model has tiny memory footprint of {\textasciitilde}5 MB and low inference time of {\textasciitilde}2 milliseconds, which proves its efficiency in a resource-constrained environment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shivnikar-etal-2020-character">
<titleInfo>
<title>A character representation enhanced on-device Intent Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sudeep</namePart>
<namePart type="given">Deepak</namePart>
<namePart type="family">Shivnikar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Himanshu</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harichandana</namePart>
<namePart type="family">B S S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Joint NLP Modelling for Conversational AI @ ICON 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Praveen</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="given">G</namePart>
<namePart type="family">S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddhartha</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ranjan</namePart>
<namePart type="family">Samal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">Patna, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Intent classification is an important task in natural language understanding systems. Existing approaches have achieved perfect scores on the benchmark datasets. However they are not suitable for deployment on low-resource devices like mobiles, tablets, etc. due to their massive model size. Therefore, in this paper, we present a novel light-weight architecture for intent classification that can run efficiently on a device. We use character features to enrich the word representation. Our experiments prove that our proposed model outperforms existing approaches and achieves state-of-the-art results on benchmark datasets. We also report that our model has tiny memory footprint of ~5 MB and low inference time of ~2 milliseconds, which proves its efficiency in a resource-constrained environment.</abstract>
<identifier type="citekey">shivnikar-etal-2020-character</identifier>
<location>
<url>https://aclanthology.org/2020.icon-workshop.6</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>40</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A character representation enhanced on-device Intent Classification
%A Shivnikar, Sudeep Deepak
%A Arora, Himanshu
%A B S S, Harichandana
%Y S, Praveen Kumar G.
%Y Mukherjee, Siddhartha
%Y Samal, Ranjan
%S Proceedings of the Workshop on Joint NLP Modelling for Conversational AI @ ICON 2020
%D 2020
%8 December
%I NLP Association of India (NLPAI)
%C Patna, India
%F shivnikar-etal-2020-character
%X Intent classification is an important task in natural language understanding systems. Existing approaches have achieved perfect scores on the benchmark datasets. However they are not suitable for deployment on low-resource devices like mobiles, tablets, etc. due to their massive model size. Therefore, in this paper, we present a novel light-weight architecture for intent classification that can run efficiently on a device. We use character features to enrich the word representation. Our experiments prove that our proposed model outperforms existing approaches and achieves state-of-the-art results on benchmark datasets. We also report that our model has tiny memory footprint of ~5 MB and low inference time of ~2 milliseconds, which proves its efficiency in a resource-constrained environment.
%U https://aclanthology.org/2020.icon-workshop.6
%P 40-46
Markdown (Informal)
[A character representation enhanced on-device Intent Classification](https://aclanthology.org/2020.icon-workshop.6) (Shivnikar et al., ICON 2020)
ACL