@inproceedings{hosseinia-etal-2020-stance,
title = "Stance Prediction for Contemporary Issues: Data and Experiments",
author = "Hosseinia, Marjan and
Dragut, Eduard and
Mukherjee, Arjun",
editor = "Ku, Lun-Wei and
Li, Cheng-Te",
booktitle = "Proceedings of the Eighth International Workshop on Natural Language Processing for Social Media",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.socialnlp-1.5",
doi = "10.18653/v1/2020.socialnlp-1.5",
pages = "32--40",
abstract = "We investigate whether pre-trained bidirectional transformers with sentiment and emotion information improve stance detection in long discussions of contemporary issues. As a part of this work, we create a novel stance detection dataset covering 419 different controversial issues and their related pros and cons collected by procon.org in nonpartisan format. Experimental results show that a shallow recurrent neural network with sentiment or emotion information can reach competitive results compared to fine-tuned BERT with 20x fewer parameters. We also use a simple approach that explains which input phrases contribute to stance detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hosseinia-etal-2020-stance">
<titleInfo>
<title>Stance Prediction for Contemporary Issues: Data and Experiments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marjan</namePart>
<namePart type="family">Hosseinia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Dragut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Workshop on Natural Language Processing for Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng-Te</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate whether pre-trained bidirectional transformers with sentiment and emotion information improve stance detection in long discussions of contemporary issues. As a part of this work, we create a novel stance detection dataset covering 419 different controversial issues and their related pros and cons collected by procon.org in nonpartisan format. Experimental results show that a shallow recurrent neural network with sentiment or emotion information can reach competitive results compared to fine-tuned BERT with 20x fewer parameters. We also use a simple approach that explains which input phrases contribute to stance detection.</abstract>
<identifier type="citekey">hosseinia-etal-2020-stance</identifier>
<identifier type="doi">10.18653/v1/2020.socialnlp-1.5</identifier>
<location>
<url>https://aclanthology.org/2020.socialnlp-1.5</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>32</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stance Prediction for Contemporary Issues: Data and Experiments
%A Hosseinia, Marjan
%A Dragut, Eduard
%A Mukherjee, Arjun
%Y Ku, Lun-Wei
%Y Li, Cheng-Te
%S Proceedings of the Eighth International Workshop on Natural Language Processing for Social Media
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F hosseinia-etal-2020-stance
%X We investigate whether pre-trained bidirectional transformers with sentiment and emotion information improve stance detection in long discussions of contemporary issues. As a part of this work, we create a novel stance detection dataset covering 419 different controversial issues and their related pros and cons collected by procon.org in nonpartisan format. Experimental results show that a shallow recurrent neural network with sentiment or emotion information can reach competitive results compared to fine-tuned BERT with 20x fewer parameters. We also use a simple approach that explains which input phrases contribute to stance detection.
%R 10.18653/v1/2020.socialnlp-1.5
%U https://aclanthology.org/2020.socialnlp-1.5
%U https://doi.org/10.18653/v1/2020.socialnlp-1.5
%P 32-40
Markdown (Informal)
[Stance Prediction for Contemporary Issues: Data and Experiments](https://aclanthology.org/2020.socialnlp-1.5) (Hosseinia et al., SocialNLP 2020)
ACL