@inproceedings{vizcarra-ochoa-luna-2020-paraphrase,
title = "Paraphrase Generation via Adversarial Penalizations",
author = "Vizcarra, Gerson and
Ochoa-Luna, Jose",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.32",
doi = "10.18653/v1/2020.wnut-1.32",
pages = "249--259",
abstract = "Paraphrase generation is an important problem in Natural Language Processing that has been addressed with neural network-based approaches recently. This paper presents an adversarial framework to address the paraphrase generation problem in English. Unlike previous methods, we employ the discriminator output as penalization instead of using policy gradients, and we propose a global discriminator to avoid the Monte-Carlo search. In addition, this work use and compare different settings of input representation. We compare our methods to some baselines in the Quora question pairs dataset. The results show that our framework is competitive against the previous benchmarks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vizcarra-ochoa-luna-2020-paraphrase">
<titleInfo>
<title>Paraphrase Generation via Adversarial Penalizations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gerson</namePart>
<namePart type="family">Vizcarra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="family">Ochoa-Luna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Paraphrase generation is an important problem in Natural Language Processing that has been addressed with neural network-based approaches recently. This paper presents an adversarial framework to address the paraphrase generation problem in English. Unlike previous methods, we employ the discriminator output as penalization instead of using policy gradients, and we propose a global discriminator to avoid the Monte-Carlo search. In addition, this work use and compare different settings of input representation. We compare our methods to some baselines in the Quora question pairs dataset. The results show that our framework is competitive against the previous benchmarks.</abstract>
<identifier type="citekey">vizcarra-ochoa-luna-2020-paraphrase</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.32</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.32</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>249</start>
<end>259</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Paraphrase Generation via Adversarial Penalizations
%A Vizcarra, Gerson
%A Ochoa-Luna, Jose
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F vizcarra-ochoa-luna-2020-paraphrase
%X Paraphrase generation is an important problem in Natural Language Processing that has been addressed with neural network-based approaches recently. This paper presents an adversarial framework to address the paraphrase generation problem in English. Unlike previous methods, we employ the discriminator output as penalization instead of using policy gradients, and we propose a global discriminator to avoid the Monte-Carlo search. In addition, this work use and compare different settings of input representation. We compare our methods to some baselines in the Quora question pairs dataset. The results show that our framework is competitive against the previous benchmarks.
%R 10.18653/v1/2020.wnut-1.32
%U https://aclanthology.org/2020.wnut-1.32
%U https://doi.org/10.18653/v1/2020.wnut-1.32
%P 249-259
Markdown (Informal)
[Paraphrase Generation via Adversarial Penalizations](https://aclanthology.org/2020.wnut-1.32) (Vizcarra & Ochoa-Luna, WNUT 2020)
ACL