@inproceedings{qin-etal-2021-ji,
title = "基于{BERT}的意图分类与槽填充联合方法(Joint Method of Intention Classification and Slot Filling Based on {BERT})",
author = "Qin, Jun and
Ma, Tianyu and
Liu, Jing and
Tie, Jun and
Hou, Qi",
editor = "Li, Sheng and
Sun, Maosong and
Liu, Yang and
Wu, Hua and
Liu, Kang and
Che, Wanxiang and
He, Shizhu and
Rao, Gaoqi",
booktitle = "Proceedings of the 20th Chinese National Conference on Computational Linguistics",
month = aug,
year = "2021",
address = "Huhhot, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2021.ccl-1.12",
pages = "121--129",
abstract = "口语理解是自然语言处理的一个重要内容,意图分类和槽填充是口语理解的两个基本子任务。最近的研究表明,共同学习这两项任务可以起到相互促进的作用。本文提出了一个基于BERT的意图分类联合模型,通过一个关联网络使得两个任务建立直接联系,共享信息,以此来提升任务效果。模型引入BERT来增强词向量的语义表示,有效解决了目前联合模型由于训练数据规模较小导致的泛化能力较差的问题。实验结果表明,该模型能有效提升意图分类和槽填充的性能。",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qin-etal-2021-ji">
<titleInfo>
<title>基于BERT的意图分类与槽填充联合方法(Joint Method of Intention Classification and Slot Filling Based on BERT)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyu</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Tie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Huhhot, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>口语理解是自然语言处理的一个重要内容,意图分类和槽填充是口语理解的两个基本子任务。最近的研究表明,共同学习这两项任务可以起到相互促进的作用。本文提出了一个基于BERT的意图分类联合模型,通过一个关联网络使得两个任务建立直接联系,共享信息,以此来提升任务效果。模型引入BERT来增强词向量的语义表示,有效解决了目前联合模型由于训练数据规模较小导致的泛化能力较差的问题。实验结果表明,该模型能有效提升意图分类和槽填充的性能。</abstract>
<identifier type="citekey">qin-etal-2021-ji</identifier>
<location>
<url>https://aclanthology.org/2021.ccl-1.12</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>121</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于BERT的意图分类与槽填充联合方法(Joint Method of Intention Classification and Slot Filling Based on BERT)
%A Qin, Jun
%A Ma, Tianyu
%A Liu, Jing
%A Tie, Jun
%A Hou, Qi
%Y Li, Sheng
%Y Sun, Maosong
%Y Liu, Yang
%Y Wu, Hua
%Y Liu, Kang
%Y Che, Wanxiang
%Y He, Shizhu
%Y Rao, Gaoqi
%S Proceedings of the 20th Chinese National Conference on Computational Linguistics
%D 2021
%8 August
%I Chinese Information Processing Society of China
%C Huhhot, China
%G Chinese
%F qin-etal-2021-ji
%X 口语理解是自然语言处理的一个重要内容,意图分类和槽填充是口语理解的两个基本子任务。最近的研究表明,共同学习这两项任务可以起到相互促进的作用。本文提出了一个基于BERT的意图分类联合模型,通过一个关联网络使得两个任务建立直接联系,共享信息,以此来提升任务效果。模型引入BERT来增强词向量的语义表示,有效解决了目前联合模型由于训练数据规模较小导致的泛化能力较差的问题。实验结果表明,该模型能有效提升意图分类和槽填充的性能。
%U https://aclanthology.org/2021.ccl-1.12
%P 121-129
Markdown (Informal)
[基于BERT的意图分类与槽填充联合方法(Joint Method of Intention Classification and Slot Filling Based on BERT)](https://aclanthology.org/2021.ccl-1.12) (Qin et al., CCL 2021)
ACL