@inproceedings{bestgen-2021-last,
title = "{LAST} at {CMCL} 2021 Shared Task: Predicting Gaze Data During Reading with a Gradient Boosting Decision Tree Approach",
author = "Bestgen, Yves",
editor = "Chersoni, Emmanuele and
Hollenstein, Nora and
Jacobs, Cassandra and
Oseki, Yohei and
Pr{\'e}vot, Laurent and
Santus, Enrico",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.cmcl-1.10",
doi = "10.18653/v1/2021.cmcl-1.10",
pages = "90--96",
abstract = "A LightGBM model fed with target word lexical characteristics and features obtained from word frequency lists, psychometric data and bigram association measures has been optimized for the 2021 CMCL Shared Task on Eye-Tracking Data Prediction. It obtained the best performance of all teams on two of the five eye-tracking measures to predict, allowing it to rank first on the official challenge criterion and to outperform all deep-learning based systems participating in the challenge.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bestgen-2021-last">
<titleInfo>
<title>LAST at CMCL 2021 Shared Task: Predicting Gaze Data During Reading with a Gradient Boosting Decision Tree Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yves</namePart>
<namePart type="family">Bestgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuele</namePart>
<namePart type="family">Chersoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cassandra</namePart>
<namePart type="family">Jacobs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Prévot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A LightGBM model fed with target word lexical characteristics and features obtained from word frequency lists, psychometric data and bigram association measures has been optimized for the 2021 CMCL Shared Task on Eye-Tracking Data Prediction. It obtained the best performance of all teams on two of the five eye-tracking measures to predict, allowing it to rank first on the official challenge criterion and to outperform all deep-learning based systems participating in the challenge.</abstract>
<identifier type="citekey">bestgen-2021-last</identifier>
<identifier type="doi">10.18653/v1/2021.cmcl-1.10</identifier>
<location>
<url>https://aclanthology.org/2021.cmcl-1.10</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>90</start>
<end>96</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LAST at CMCL 2021 Shared Task: Predicting Gaze Data During Reading with a Gradient Boosting Decision Tree Approach
%A Bestgen, Yves
%Y Chersoni, Emmanuele
%Y Hollenstein, Nora
%Y Jacobs, Cassandra
%Y Oseki, Yohei
%Y Prévot, Laurent
%Y Santus, Enrico
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F bestgen-2021-last
%X A LightGBM model fed with target word lexical characteristics and features obtained from word frequency lists, psychometric data and bigram association measures has been optimized for the 2021 CMCL Shared Task on Eye-Tracking Data Prediction. It obtained the best performance of all teams on two of the five eye-tracking measures to predict, allowing it to rank first on the official challenge criterion and to outperform all deep-learning based systems participating in the challenge.
%R 10.18653/v1/2021.cmcl-1.10
%U https://aclanthology.org/2021.cmcl-1.10
%U https://doi.org/10.18653/v1/2021.cmcl-1.10
%P 90-96
Markdown (Informal)
[LAST at CMCL 2021 Shared Task: Predicting Gaze Data During Reading with a Gradient Boosting Decision Tree Approach](https://aclanthology.org/2021.cmcl-1.10) (Bestgen, CMCL 2021)
ACL