@inproceedings{li-rudzicz-2021-torontocl,
title = "{T}oronto{CL} at {CMCL} 2021 Shared Task: {R}o{BERT}a with Multi-Stage Fine-Tuning for Eye-Tracking Prediction",
author = "Li, Bai and
Rudzicz, Frank",
editor = "Chersoni, Emmanuele and
Hollenstein, Nora and
Jacobs, Cassandra and
Oseki, Yohei and
Pr{\'e}vot, Laurent and
Santus, Enrico",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.cmcl-1.9",
doi = "10.18653/v1/2021.cmcl-1.9",
pages = "85--89",
abstract = "Eye movement data during reading is a useful source of information for understanding language comprehension processes. In this paper, we describe our submission to the CMCL 2021 shared task on predicting human reading patterns. Our model uses RoBERTa with a regression layer to predict 5 eye-tracking features. We train the model in two stages: we first fine-tune on the Provo corpus (another eye-tracking dataset), then fine-tune on the task data. We compare different Transformer models and apply ensembling methods to improve the performance. Our final submission achieves a MAE score of 3.929, ranking 3rd place out of 13 teams that participated in this shared task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-rudzicz-2021-torontocl">
<titleInfo>
<title>TorontoCL at CMCL 2021 Shared Task: RoBERTa with Multi-Stage Fine-Tuning for Eye-Tracking Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bai</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Rudzicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuele</namePart>
<namePart type="family">Chersoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cassandra</namePart>
<namePart type="family">Jacobs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Prévot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Eye movement data during reading is a useful source of information for understanding language comprehension processes. In this paper, we describe our submission to the CMCL 2021 shared task on predicting human reading patterns. Our model uses RoBERTa with a regression layer to predict 5 eye-tracking features. We train the model in two stages: we first fine-tune on the Provo corpus (another eye-tracking dataset), then fine-tune on the task data. We compare different Transformer models and apply ensembling methods to improve the performance. Our final submission achieves a MAE score of 3.929, ranking 3rd place out of 13 teams that participated in this shared task.</abstract>
<identifier type="citekey">li-rudzicz-2021-torontocl</identifier>
<identifier type="doi">10.18653/v1/2021.cmcl-1.9</identifier>
<location>
<url>https://aclanthology.org/2021.cmcl-1.9</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>85</start>
<end>89</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TorontoCL at CMCL 2021 Shared Task: RoBERTa with Multi-Stage Fine-Tuning for Eye-Tracking Prediction
%A Li, Bai
%A Rudzicz, Frank
%Y Chersoni, Emmanuele
%Y Hollenstein, Nora
%Y Jacobs, Cassandra
%Y Oseki, Yohei
%Y Prévot, Laurent
%Y Santus, Enrico
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F li-rudzicz-2021-torontocl
%X Eye movement data during reading is a useful source of information for understanding language comprehension processes. In this paper, we describe our submission to the CMCL 2021 shared task on predicting human reading patterns. Our model uses RoBERTa with a regression layer to predict 5 eye-tracking features. We train the model in two stages: we first fine-tune on the Provo corpus (another eye-tracking dataset), then fine-tune on the task data. We compare different Transformer models and apply ensembling methods to improve the performance. Our final submission achieves a MAE score of 3.929, ranking 3rd place out of 13 teams that participated in this shared task.
%R 10.18653/v1/2021.cmcl-1.9
%U https://aclanthology.org/2021.cmcl-1.9
%U https://doi.org/10.18653/v1/2021.cmcl-1.9
%P 85-89
Markdown (Informal)
[TorontoCL at CMCL 2021 Shared Task: RoBERTa with Multi-Stage Fine-Tuning for Eye-Tracking Prediction](https://aclanthology.org/2021.cmcl-1.9) (Li & Rudzicz, CMCL 2021)
ACL