@inproceedings{terragni-etal-2021-octis,
title = "{OCTIS}: Comparing and Optimizing Topic models is Simple!",
author = "Terragni, Silvia and
Fersini, Elisabetta and
Galuzzi, Bruno Giovanni and
Tropeano, Pietro and
Candelieri, Antonio",
editor = "Gkatzia, Dimitra and
Seddah, Djam{\'e}",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-demos.31",
doi = "10.18653/v1/2021.eacl-demos.31",
pages = "263--270",
abstract = "In this paper, we present OCTIS, a framework for training, analyzing, and comparing Topic Models, whose optimal hyper-parameters are estimated using a Bayesian Optimization approach. The proposed solution integrates several state-of-the-art topic models and evaluation metrics. These metrics can be targeted as objective by the underlying optimization procedure to determine the best hyper-parameter configuration. OCTIS allows researchers and practitioners to have a fair comparison between topic models of interest, using several benchmark datasets and well-known evaluation metrics, to integrate novel algorithms, and to have an interactive visualization of the results for understanding the behavior of each model. The code is available at the following link: \url{https://github.com/MIND-Lab/OCTIS}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="terragni-etal-2021-octis">
<titleInfo>
<title>OCTIS: Comparing and Optimizing Topic models is Simple!</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvia</namePart>
<namePart type="family">Terragni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisabetta</namePart>
<namePart type="family">Fersini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bruno</namePart>
<namePart type="given">Giovanni</namePart>
<namePart type="family">Galuzzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pietro</namePart>
<namePart type="family">Tropeano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Candelieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dimitra</namePart>
<namePart type="family">Gkatzia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Djamé</namePart>
<namePart type="family">Seddah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present OCTIS, a framework for training, analyzing, and comparing Topic Models, whose optimal hyper-parameters are estimated using a Bayesian Optimization approach. The proposed solution integrates several state-of-the-art topic models and evaluation metrics. These metrics can be targeted as objective by the underlying optimization procedure to determine the best hyper-parameter configuration. OCTIS allows researchers and practitioners to have a fair comparison between topic models of interest, using several benchmark datasets and well-known evaluation metrics, to integrate novel algorithms, and to have an interactive visualization of the results for understanding the behavior of each model. The code is available at the following link: https://github.com/MIND-Lab/OCTIS.</abstract>
<identifier type="citekey">terragni-etal-2021-octis</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-demos.31</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-demos.31</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>263</start>
<end>270</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OCTIS: Comparing and Optimizing Topic models is Simple!
%A Terragni, Silvia
%A Fersini, Elisabetta
%A Galuzzi, Bruno Giovanni
%A Tropeano, Pietro
%A Candelieri, Antonio
%Y Gkatzia, Dimitra
%Y Seddah, Djamé
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F terragni-etal-2021-octis
%X In this paper, we present OCTIS, a framework for training, analyzing, and comparing Topic Models, whose optimal hyper-parameters are estimated using a Bayesian Optimization approach. The proposed solution integrates several state-of-the-art topic models and evaluation metrics. These metrics can be targeted as objective by the underlying optimization procedure to determine the best hyper-parameter configuration. OCTIS allows researchers and practitioners to have a fair comparison between topic models of interest, using several benchmark datasets and well-known evaluation metrics, to integrate novel algorithms, and to have an interactive visualization of the results for understanding the behavior of each model. The code is available at the following link: https://github.com/MIND-Lab/OCTIS.
%R 10.18653/v1/2021.eacl-demos.31
%U https://aclanthology.org/2021.eacl-demos.31
%U https://doi.org/10.18653/v1/2021.eacl-demos.31
%P 263-270
Markdown (Informal)
[OCTIS: Comparing and Optimizing Topic models is Simple!](https://aclanthology.org/2021.eacl-demos.31) (Terragni et al., EACL 2021)
ACL
- Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano, and Antonio Candelieri. 2021. OCTIS: Comparing and Optimizing Topic models is Simple!. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 263–270, Online. Association for Computational Linguistics.