Sorting through the noise: Testing robustness of information processing in pre-trained language models

Lalchand Pandia, Allyson Ettinger


Abstract
Pre-trained LMs have shown impressive performance on downstream NLP tasks, but we have yet to establish a clear understanding of their sophistication when it comes to processing, retaining, and applying information presented in their input. In this paper we tackle a component of this question by examining robustness of models’ ability to deploy relevant context information in the face of distracting content. We present models with cloze tasks requiring use of critical context information, and introduce distracting content to test how robustly the models retain and use that critical information for prediction. We also systematically manipulate the nature of these distractors, to shed light on dynamics of models’ use of contextual cues. We find that although models appear in simple contexts to make predictions based on understanding and applying relevant facts from prior context, the presence of distracting but irrelevant content has clear impact in confusing model predictions. In particular, models appear particularly susceptible to factors of semantic similarity and word position. The findings are consistent with the conclusion that LM predictions are driven in large part by superficial contextual cues, rather than by robust representations of context meaning.
Anthology ID:
2021.emnlp-main.119
Volume:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2021
Address:
Online and Punta Cana, Dominican Republic
Editors:
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, Scott Wen-tau Yih
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1583–1596
Language:
URL:
https://aclanthology.org/2021.emnlp-main.119
DOI:
10.18653/v1/2021.emnlp-main.119
Bibkey:
Cite (ACL):
Lalchand Pandia and Allyson Ettinger. 2021. Sorting through the noise: Testing robustness of information processing in pre-trained language models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1583–1596, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
Cite (Informal):
Sorting through the noise: Testing robustness of information processing in pre-trained language models (Pandia & Ettinger, EMNLP 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.emnlp-main.119.pdf
Video:
 https://aclanthology.org/2021.emnlp-main.119.mp4