@inproceedings{hsu-etal-2021-semantics,
title = "Semantics-Preserved Data Augmentation for Aspect-Based Sentiment Analysis",
author = "Hsu, Ting-Wei and
Chen, Chung-Chi and
Huang, Hen-Hsen and
Chen, Hsin-Hsi",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.362",
doi = "10.18653/v1/2021.emnlp-main.362",
pages = "4417--4422",
abstract = "Both the issues of data deficiencies and semantic consistency are important for data augmentation. Most of previous methods address the first issue, but ignore the second one. In the cases of aspect-based sentiment analysis, violation of the above issues may change the aspect and sentiment polarity. In this paper, we propose a semantics-preservation data augmentation approach by considering the importance of each word in a textual sequence according to the related aspects and sentiments. We then substitute the unimportant tokens with two replacement strategies without altering the aspect-level polarity. Our approach is evaluated on several publicly available sentiment analysis datasets and the real-world stock price/risk movement prediction scenarios. Experimental results show that our methodology achieves better performances in all datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hsu-etal-2021-semantics">
<titleInfo>
<title>Semantics-Preserved Data Augmentation for Aspect-Based Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ting-Wei</namePart>
<namePart type="family">Hsu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Chi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hen-Hsen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Both the issues of data deficiencies and semantic consistency are important for data augmentation. Most of previous methods address the first issue, but ignore the second one. In the cases of aspect-based sentiment analysis, violation of the above issues may change the aspect and sentiment polarity. In this paper, we propose a semantics-preservation data augmentation approach by considering the importance of each word in a textual sequence according to the related aspects and sentiments. We then substitute the unimportant tokens with two replacement strategies without altering the aspect-level polarity. Our approach is evaluated on several publicly available sentiment analysis datasets and the real-world stock price/risk movement prediction scenarios. Experimental results show that our methodology achieves better performances in all datasets.</abstract>
<identifier type="citekey">hsu-etal-2021-semantics</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.362</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.362</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>4417</start>
<end>4422</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantics-Preserved Data Augmentation for Aspect-Based Sentiment Analysis
%A Hsu, Ting-Wei
%A Chen, Chung-Chi
%A Huang, Hen-Hsen
%A Chen, Hsin-Hsi
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F hsu-etal-2021-semantics
%X Both the issues of data deficiencies and semantic consistency are important for data augmentation. Most of previous methods address the first issue, but ignore the second one. In the cases of aspect-based sentiment analysis, violation of the above issues may change the aspect and sentiment polarity. In this paper, we propose a semantics-preservation data augmentation approach by considering the importance of each word in a textual sequence according to the related aspects and sentiments. We then substitute the unimportant tokens with two replacement strategies without altering the aspect-level polarity. Our approach is evaluated on several publicly available sentiment analysis datasets and the real-world stock price/risk movement prediction scenarios. Experimental results show that our methodology achieves better performances in all datasets.
%R 10.18653/v1/2021.emnlp-main.362
%U https://aclanthology.org/2021.emnlp-main.362
%U https://doi.org/10.18653/v1/2021.emnlp-main.362
%P 4417-4422
Markdown (Informal)
[Semantics-Preserved Data Augmentation for Aspect-Based Sentiment Analysis](https://aclanthology.org/2021.emnlp-main.362) (Hsu et al., EMNLP 2021)
ACL