@inproceedings{conforti-etal-2021-adversarial,
title = "Adversarial Training for News Stance Detection: Leveraging Signals from a Multi-Genre Corpus.",
author = "Conforti, Costanza and
Berndt, Jakob and
Basaldella, Marco and
Pilehvar, Mohammad Taher and
Giannitsarou, Chryssi and
Toxvaerd, Flavio and
Collier, Nigel",
editor = "Toivonen, Hannu and
Boggia, Michele",
booktitle = "Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.hackashop-1.1",
pages = "1--7",
abstract = "Cross-target generalization constitutes an important issue for news Stance Detection (SD). In this short paper, we investigate adversarial cross-genre SD, where knowledge from annotated user-generated data is leveraged to improve news SD on targets unseen during training. We implement a BERT-based adversarial network and show experimental performance improvements over a set of strong baselines. Given the abundance of user-generated data, which are considerably less expensive to retrieve and annotate than news articles, this constitutes a promising research direction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="conforti-etal-2021-adversarial">
<titleInfo>
<title>Adversarial Training for News Stance Detection: Leveraging Signals from a Multi-Genre Corpus.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Costanza</namePart>
<namePart type="family">Conforti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakob</namePart>
<namePart type="family">Berndt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Basaldella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chryssi</namePart>
<namePart type="family">Giannitsarou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flavio</namePart>
<namePart type="family">Toxvaerd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nigel</namePart>
<namePart type="family">Collier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannu</namePart>
<namePart type="family">Toivonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michele</namePart>
<namePart type="family">Boggia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cross-target generalization constitutes an important issue for news Stance Detection (SD). In this short paper, we investigate adversarial cross-genre SD, where knowledge from annotated user-generated data is leveraged to improve news SD on targets unseen during training. We implement a BERT-based adversarial network and show experimental performance improvements over a set of strong baselines. Given the abundance of user-generated data, which are considerably less expensive to retrieve and annotate than news articles, this constitutes a promising research direction.</abstract>
<identifier type="citekey">conforti-etal-2021-adversarial</identifier>
<location>
<url>https://aclanthology.org/2021.hackashop-1.1</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial Training for News Stance Detection: Leveraging Signals from a Multi-Genre Corpus.
%A Conforti, Costanza
%A Berndt, Jakob
%A Basaldella, Marco
%A Pilehvar, Mohammad Taher
%A Giannitsarou, Chryssi
%A Toxvaerd, Flavio
%A Collier, Nigel
%Y Toivonen, Hannu
%Y Boggia, Michele
%S Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F conforti-etal-2021-adversarial
%X Cross-target generalization constitutes an important issue for news Stance Detection (SD). In this short paper, we investigate adversarial cross-genre SD, where knowledge from annotated user-generated data is leveraged to improve news SD on targets unseen during training. We implement a BERT-based adversarial network and show experimental performance improvements over a set of strong baselines. Given the abundance of user-generated data, which are considerably less expensive to retrieve and annotate than news articles, this constitutes a promising research direction.
%U https://aclanthology.org/2021.hackashop-1.1
%P 1-7
Markdown (Informal)
[Adversarial Training for News Stance Detection: Leveraging Signals from a Multi-Genre Corpus.](https://aclanthology.org/2021.hackashop-1.1) (Conforti et al., Hackashop 2021)
ACL