@inproceedings{kazemi-etal-2021-extractive,
title = "Extractive and Abstractive Explanations for Fact-Checking and Evaluation of News",
author = "Kazemi, Ashkan and
Li, Zehua and
P{\'e}rez-Rosas, Ver{\'o}nica and
Mihalcea, Rada",
editor = "Feldman, Anna and
Da San Martino, Giovanni and
Leberknight, Chris and
Nakov, Preslav",
booktitle = "Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlp4if-1.7",
doi = "10.18653/v1/2021.nlp4if-1.7",
pages = "45--50",
abstract = "In this paper, we explore the construction of natural language explanations for news claims, with the goal of assisting fact-checking and news evaluation applications. We experiment with two methods: (1) an extractive method based on Biased TextRank {--} a resource-effective unsupervised graph-based algorithm for content extraction; and (2) an abstractive method based on the GPT-2 language model. We perform comparative evaluations on two misinformation datasets in the political and health news domains, and find that the extractive method shows the most promise.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kazemi-etal-2021-extractive">
<titleInfo>
<title>Extractive and Abstractive Explanations for Fact-Checking and Evaluation of News</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashkan</namePart>
<namePart type="family">Kazemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zehua</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Verónica</namePart>
<namePart type="family">Pérez-Rosas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Leberknight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we explore the construction of natural language explanations for news claims, with the goal of assisting fact-checking and news evaluation applications. We experiment with two methods: (1) an extractive method based on Biased TextRank – a resource-effective unsupervised graph-based algorithm for content extraction; and (2) an abstractive method based on the GPT-2 language model. We perform comparative evaluations on two misinformation datasets in the political and health news domains, and find that the extractive method shows the most promise.</abstract>
<identifier type="citekey">kazemi-etal-2021-extractive</identifier>
<identifier type="doi">10.18653/v1/2021.nlp4if-1.7</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4if-1.7</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>45</start>
<end>50</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extractive and Abstractive Explanations for Fact-Checking and Evaluation of News
%A Kazemi, Ashkan
%A Li, Zehua
%A Pérez-Rosas, Verónica
%A Mihalcea, Rada
%Y Feldman, Anna
%Y Da San Martino, Giovanni
%Y Leberknight, Chris
%Y Nakov, Preslav
%S Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F kazemi-etal-2021-extractive
%X In this paper, we explore the construction of natural language explanations for news claims, with the goal of assisting fact-checking and news evaluation applications. We experiment with two methods: (1) an extractive method based on Biased TextRank – a resource-effective unsupervised graph-based algorithm for content extraction; and (2) an abstractive method based on the GPT-2 language model. We perform comparative evaluations on two misinformation datasets in the political and health news domains, and find that the extractive method shows the most promise.
%R 10.18653/v1/2021.nlp4if-1.7
%U https://aclanthology.org/2021.nlp4if-1.7
%U https://doi.org/10.18653/v1/2021.nlp4if-1.7
%P 45-50
Markdown (Informal)
[Extractive and Abstractive Explanations for Fact-Checking and Evaluation of News](https://aclanthology.org/2021.nlp4if-1.7) (Kazemi et al., NLP4IF 2021)
ACL