@inproceedings{xie-etal-2021-transformer,
title = "Transformer with Syntactic Position Encoding for Machine Translation",
author = "Xie, Yikuan and
Wang, Wenyong and
Du, Mingqian and
He, Qing",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)",
month = sep,
year = "2021",
address = "Held Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-1.172",
pages = "1536--1544",
abstract = "It has been widely recognized that syntax information can help end-to-end neural machine translation (NMT) systems to achieve better translation. In order to integrate dependency information into Transformer based NMT, existing approaches either exploit words{'} local head-dependent relations, ignoring their non-local neighbors carrying important context; or approximate two words{'} syntactic relation by their relative distance on the dependency tree, sacrificing exactness. To address these issues, we propose global positional encoding for dependency tree, a new scheme that facilitates syntactic relation modeling between any two words with keeping exactness and without immediate neighbor constraint. Experiment results on NC11 German→English, English→German and WMT English→German datasets show that our approach is more effective than the above two strategies. In addition, our experiments quantitatively show that compared with higher layers, lower layers of the model are more proper places to incorporate syntax information in terms of each layer{'}s preference to the syntactic pattern and the final performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xie-etal-2021-transformer">
<titleInfo>
<title>Transformer with Syntactic Position Encoding for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yikuan</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenyong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingqian</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qing</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Held Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>It has been widely recognized that syntax information can help end-to-end neural machine translation (NMT) systems to achieve better translation. In order to integrate dependency information into Transformer based NMT, existing approaches either exploit words’ local head-dependent relations, ignoring their non-local neighbors carrying important context; or approximate two words’ syntactic relation by their relative distance on the dependency tree, sacrificing exactness. To address these issues, we propose global positional encoding for dependency tree, a new scheme that facilitates syntactic relation modeling between any two words with keeping exactness and without immediate neighbor constraint. Experiment results on NC11 German→English, English→German and WMT English→German datasets show that our approach is more effective than the above two strategies. In addition, our experiments quantitatively show that compared with higher layers, lower layers of the model are more proper places to incorporate syntax information in terms of each layer’s preference to the syntactic pattern and the final performance.</abstract>
<identifier type="citekey">xie-etal-2021-transformer</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-1.172</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>1536</start>
<end>1544</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transformer with Syntactic Position Encoding for Machine Translation
%A Xie, Yikuan
%A Wang, Wenyong
%A Du, Mingqian
%A He, Qing
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Held Online
%F xie-etal-2021-transformer
%X It has been widely recognized that syntax information can help end-to-end neural machine translation (NMT) systems to achieve better translation. In order to integrate dependency information into Transformer based NMT, existing approaches either exploit words’ local head-dependent relations, ignoring their non-local neighbors carrying important context; or approximate two words’ syntactic relation by their relative distance on the dependency tree, sacrificing exactness. To address these issues, we propose global positional encoding for dependency tree, a new scheme that facilitates syntactic relation modeling between any two words with keeping exactness and without immediate neighbor constraint. Experiment results on NC11 German→English, English→German and WMT English→German datasets show that our approach is more effective than the above two strategies. In addition, our experiments quantitatively show that compared with higher layers, lower layers of the model are more proper places to incorporate syntax information in terms of each layer’s preference to the syntactic pattern and the final performance.
%U https://aclanthology.org/2021.ranlp-1.172
%P 1536-1544
Markdown (Informal)
[Transformer with Syntactic Position Encoding for Machine Translation](https://aclanthology.org/2021.ranlp-1.172) (Xie et al., RANLP 2021)
ACL