@inproceedings{kataria-etal-2021-bennettnlp,
title = "{B}ennett{NLP} at {S}em{E}val-2021 Task 5: Toxic Spans Detection using Stacked Embedding Powered Toxic Entity Recognizer",
author = "Kataria, Harsh and
Gupta, Ambuje and
Mishra, Vipul",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.128",
doi = "10.18653/v1/2021.semeval-1.128",
pages = "941--947",
abstract = "With the rapid growth in technology, social media activity has seen a boom across all age groups. It is humanly impossible to check all the tweets, comments and status manually whether they follow proper community guidelines. A lot of toxicity is regularly posted on these social media platforms. This research aims to find toxic words in a sentence so that a healthy social community is built across the globe and the users receive censored content with specific warnings and facts. To solve this challenging problem, authors have combined concepts of Linked List for pre-processing and then used the idea of stacked embeddings like BERT Embeddings, Flair Embeddings and Word2Vec on the flairNLP framework to get the desired results. F1 metric was used to evaluate the model. The authors were able to produce a 0.74 F1 score on their test set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kataria-etal-2021-bennettnlp">
<titleInfo>
<title>BennettNLP at SemEval-2021 Task 5: Toxic Spans Detection using Stacked Embedding Powered Toxic Entity Recognizer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Harsh</namePart>
<namePart type="family">Kataria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ambuje</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vipul</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the rapid growth in technology, social media activity has seen a boom across all age groups. It is humanly impossible to check all the tweets, comments and status manually whether they follow proper community guidelines. A lot of toxicity is regularly posted on these social media platforms. This research aims to find toxic words in a sentence so that a healthy social community is built across the globe and the users receive censored content with specific warnings and facts. To solve this challenging problem, authors have combined concepts of Linked List for pre-processing and then used the idea of stacked embeddings like BERT Embeddings, Flair Embeddings and Word2Vec on the flairNLP framework to get the desired results. F1 metric was used to evaluate the model. The authors were able to produce a 0.74 F1 score on their test set.</abstract>
<identifier type="citekey">kataria-etal-2021-bennettnlp</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.128</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.128</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>941</start>
<end>947</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BennettNLP at SemEval-2021 Task 5: Toxic Spans Detection using Stacked Embedding Powered Toxic Entity Recognizer
%A Kataria, Harsh
%A Gupta, Ambuje
%A Mishra, Vipul
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F kataria-etal-2021-bennettnlp
%X With the rapid growth in technology, social media activity has seen a boom across all age groups. It is humanly impossible to check all the tweets, comments and status manually whether they follow proper community guidelines. A lot of toxicity is regularly posted on these social media platforms. This research aims to find toxic words in a sentence so that a healthy social community is built across the globe and the users receive censored content with specific warnings and facts. To solve this challenging problem, authors have combined concepts of Linked List for pre-processing and then used the idea of stacked embeddings like BERT Embeddings, Flair Embeddings and Word2Vec on the flairNLP framework to get the desired results. F1 metric was used to evaluate the model. The authors were able to produce a 0.74 F1 score on their test set.
%R 10.18653/v1/2021.semeval-1.128
%U https://aclanthology.org/2021.semeval-1.128
%U https://doi.org/10.18653/v1/2021.semeval-1.128
%P 941-947
Markdown (Informal)
[BennettNLP at SemEval-2021 Task 5: Toxic Spans Detection using Stacked Embedding Powered Toxic Entity Recognizer](https://aclanthology.org/2021.semeval-1.128) (Kataria et al., SemEval 2021)
ACL