@inproceedings{okabe-etal-2022-weakly,
title = "Weakly Supervised Word Segmentation for Computational Language Documentation",
author = "Okabe, Shu and
Besacier, Laurent and
Yvon, Fran{\c{c}}ois",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.510",
doi = "10.18653/v1/2022.acl-long.510",
pages = "7385--7398",
abstract = "Word and morpheme segmentation are fundamental steps of language documentation as they allow to discover lexical units in a language for which the lexicon is unknown. However, in most language documentation scenarios, linguists do not start from a blank page: they may already have a pre-existing dictionary or have initiated manual segmentation of a small part of their data. This paper studies how such a weak supervision can be taken advantage of in Bayesian non-parametric models of segmentation. Our experiments on two very low resource languages (Mboshi and Japhug), whose documentation is still in progress, show that weak supervision can be beneficial to the segmentation quality. In addition, we investigate an incremental learning scenario where manual segmentations are provided in a sequential manner. This work opens the way for interactive annotation tools for documentary linguists.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="okabe-etal-2022-weakly">
<titleInfo>
<title>Weakly Supervised Word Segmentation for Computational Language Documentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shu</namePart>
<namePart type="family">Okabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Besacier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word and morpheme segmentation are fundamental steps of language documentation as they allow to discover lexical units in a language for which the lexicon is unknown. However, in most language documentation scenarios, linguists do not start from a blank page: they may already have a pre-existing dictionary or have initiated manual segmentation of a small part of their data. This paper studies how such a weak supervision can be taken advantage of in Bayesian non-parametric models of segmentation. Our experiments on two very low resource languages (Mboshi and Japhug), whose documentation is still in progress, show that weak supervision can be beneficial to the segmentation quality. In addition, we investigate an incremental learning scenario where manual segmentations are provided in a sequential manner. This work opens the way for interactive annotation tools for documentary linguists.</abstract>
<identifier type="citekey">okabe-etal-2022-weakly</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.510</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.510</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>7385</start>
<end>7398</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Weakly Supervised Word Segmentation for Computational Language Documentation
%A Okabe, Shu
%A Besacier, Laurent
%A Yvon, François
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F okabe-etal-2022-weakly
%X Word and morpheme segmentation are fundamental steps of language documentation as they allow to discover lexical units in a language for which the lexicon is unknown. However, in most language documentation scenarios, linguists do not start from a blank page: they may already have a pre-existing dictionary or have initiated manual segmentation of a small part of their data. This paper studies how such a weak supervision can be taken advantage of in Bayesian non-parametric models of segmentation. Our experiments on two very low resource languages (Mboshi and Japhug), whose documentation is still in progress, show that weak supervision can be beneficial to the segmentation quality. In addition, we investigate an incremental learning scenario where manual segmentations are provided in a sequential manner. This work opens the way for interactive annotation tools for documentary linguists.
%R 10.18653/v1/2022.acl-long.510
%U https://aclanthology.org/2022.acl-long.510
%U https://doi.org/10.18653/v1/2022.acl-long.510
%P 7385-7398
Markdown (Informal)
[Weakly Supervised Word Segmentation for Computational Language Documentation](https://aclanthology.org/2022.acl-long.510) (Okabe et al., ACL 2022)
ACL