@inproceedings{chiu-shinzato-2022-cross,
title = "Cross-Encoder Data Annotation for Bi-Encoder Based Product Matching",
author = "Chiu, Justin and
Shinzato, Keiji",
editor = "Li, Yunyao and
Lazaridou, Angeliki",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-industry.16",
doi = "10.18653/v1/2022.emnlp-industry.16",
pages = "161--168",
abstract = "Matching a seller listed item to an appropriate product is an important step for an e-commerce platform. With the recent advancement in deep learning, there are different encoder based approaches being proposed as solution. When textual data for two products are available, cross-encoder approaches encode them jointly while bi-encoder approaches encode them separately. Since cross-encoders are computationally heavy, approaches based on bi-encoders are a common practice for this challenge. In this paper, we propose cross-encoder data annotation; a technique to annotate or refine human annotated training data for bi-encoder models using a cross-encoder model. This technique enables us to build a robust model without annotation on newly collected training data or further improve model performance on annotated training data. We evaluate the cross-encoder data annotation on the product matching task using a real-world e-commerce dataset containing 104 million products. Experimental results show that the cross-encoder data annotation improves 4{\%} absolute accuracy when no annotation for training data is available, and 2{\%} absolute accuracy when annotation for training data is available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chiu-shinzato-2022-cross">
<titleInfo>
<title>Cross-Encoder Data Annotation for Bi-Encoder Based Product Matching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Justin</namePart>
<namePart type="family">Chiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keiji</namePart>
<namePart type="family">Shinzato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angeliki</namePart>
<namePart type="family">Lazaridou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Matching a seller listed item to an appropriate product is an important step for an e-commerce platform. With the recent advancement in deep learning, there are different encoder based approaches being proposed as solution. When textual data for two products are available, cross-encoder approaches encode them jointly while bi-encoder approaches encode them separately. Since cross-encoders are computationally heavy, approaches based on bi-encoders are a common practice for this challenge. In this paper, we propose cross-encoder data annotation; a technique to annotate or refine human annotated training data for bi-encoder models using a cross-encoder model. This technique enables us to build a robust model without annotation on newly collected training data or further improve model performance on annotated training data. We evaluate the cross-encoder data annotation on the product matching task using a real-world e-commerce dataset containing 104 million products. Experimental results show that the cross-encoder data annotation improves 4% absolute accuracy when no annotation for training data is available, and 2% absolute accuracy when annotation for training data is available.</abstract>
<identifier type="citekey">chiu-shinzato-2022-cross</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-industry.16</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-industry.16</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>161</start>
<end>168</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Encoder Data Annotation for Bi-Encoder Based Product Matching
%A Chiu, Justin
%A Shinzato, Keiji
%Y Li, Yunyao
%Y Lazaridou, Angeliki
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F chiu-shinzato-2022-cross
%X Matching a seller listed item to an appropriate product is an important step for an e-commerce platform. With the recent advancement in deep learning, there are different encoder based approaches being proposed as solution. When textual data for two products are available, cross-encoder approaches encode them jointly while bi-encoder approaches encode them separately. Since cross-encoders are computationally heavy, approaches based on bi-encoders are a common practice for this challenge. In this paper, we propose cross-encoder data annotation; a technique to annotate or refine human annotated training data for bi-encoder models using a cross-encoder model. This technique enables us to build a robust model without annotation on newly collected training data or further improve model performance on annotated training data. We evaluate the cross-encoder data annotation on the product matching task using a real-world e-commerce dataset containing 104 million products. Experimental results show that the cross-encoder data annotation improves 4% absolute accuracy when no annotation for training data is available, and 2% absolute accuracy when annotation for training data is available.
%R 10.18653/v1/2022.emnlp-industry.16
%U https://aclanthology.org/2022.emnlp-industry.16
%U https://doi.org/10.18653/v1/2022.emnlp-industry.16
%P 161-168
Markdown (Informal)
[Cross-Encoder Data Annotation for Bi-Encoder Based Product Matching](https://aclanthology.org/2022.emnlp-industry.16) (Chiu & Shinzato, EMNLP 2022)
ACL