@inproceedings{zhang-etal-2022-robustness,
title = "Robustness of Demonstration-based Learning Under Limited Data Scenario",
author = "Zhang, Hongxin and
Zhang, Yanzhe and
Zhang, Ruiyi and
Yang, Diyi",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.116",
doi = "10.18653/v1/2022.emnlp-main.116",
pages = "1769--1782",
abstract = "Demonstration-based learning has shown great potential in stimulating pretrained language models{'} ability under limited data scenario. Simply augmenting the input with some demonstrations can significantly improve performance on few-shot NER. However, why such demonstrations are beneficial for the learning process remains unclear since there is no explicit alignment between the demonstrations and the predictions. In this paper, we design pathological demonstrations by gradually removing intuitively useful information from the standard ones to take a deep dive of the robustness of demonstration-based sequence labeling and show that (1) demonstrations composed of random tokens still make the model a better few-shot learner; (2) the length of random demonstrations and the relevance of random tokens are the main factors affecting the performance; (3) demonstrations increase the confidence of model predictions on captured superficial patterns. We have publicly released our code at https://github.com/SALT-NLP/RobustDemo.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2022-robustness">
<titleInfo>
<title>Robustness of Demonstration-based Learning Under Limited Data Scenario</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongxin</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanzhe</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruiyi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Demonstration-based learning has shown great potential in stimulating pretrained language models’ ability under limited data scenario. Simply augmenting the input with some demonstrations can significantly improve performance on few-shot NER. However, why such demonstrations are beneficial for the learning process remains unclear since there is no explicit alignment between the demonstrations and the predictions. In this paper, we design pathological demonstrations by gradually removing intuitively useful information from the standard ones to take a deep dive of the robustness of demonstration-based sequence labeling and show that (1) demonstrations composed of random tokens still make the model a better few-shot learner; (2) the length of random demonstrations and the relevance of random tokens are the main factors affecting the performance; (3) demonstrations increase the confidence of model predictions on captured superficial patterns. We have publicly released our code at https://github.com/SALT-NLP/RobustDemo.</abstract>
<identifier type="citekey">zhang-etal-2022-robustness</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.116</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.116</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>1769</start>
<end>1782</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Robustness of Demonstration-based Learning Under Limited Data Scenario
%A Zhang, Hongxin
%A Zhang, Yanzhe
%A Zhang, Ruiyi
%A Yang, Diyi
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F zhang-etal-2022-robustness
%X Demonstration-based learning has shown great potential in stimulating pretrained language models’ ability under limited data scenario. Simply augmenting the input with some demonstrations can significantly improve performance on few-shot NER. However, why such demonstrations are beneficial for the learning process remains unclear since there is no explicit alignment between the demonstrations and the predictions. In this paper, we design pathological demonstrations by gradually removing intuitively useful information from the standard ones to take a deep dive of the robustness of demonstration-based sequence labeling and show that (1) demonstrations composed of random tokens still make the model a better few-shot learner; (2) the length of random demonstrations and the relevance of random tokens are the main factors affecting the performance; (3) demonstrations increase the confidence of model predictions on captured superficial patterns. We have publicly released our code at https://github.com/SALT-NLP/RobustDemo.
%R 10.18653/v1/2022.emnlp-main.116
%U https://aclanthology.org/2022.emnlp-main.116
%U https://doi.org/10.18653/v1/2022.emnlp-main.116
%P 1769-1782
Markdown (Informal)
[Robustness of Demonstration-based Learning Under Limited Data Scenario](https://aclanthology.org/2022.emnlp-main.116) (Zhang et al., EMNLP 2022)
ACL