@inproceedings{ozates-etal-2022-improving,
title = "Improving Code-Switching Dependency Parsing with Semi-Supervised Auxiliary Tasks",
author = {{\"O}zate{\c{s}}, {\c{S}}aziye Bet{\"u}l and
{\"O}zg{\"u}r, Arzucan and
Gungor, Tunga and
{\c{C}}etino{\u{g}}lu, {\"O}zlem},
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.87",
doi = "10.18653/v1/2022.findings-naacl.87",
pages = "1159--1171",
abstract = "Code-switching dependency parsing stands as a challenging task due to both the scarcity of necessary resources and the structural difficulties embedded in code-switched languages. In this study, we introduce novel sequence labeling models to be used as auxiliary tasks for dependency parsing of code-switched text in a semi-supervised scheme. We show that using auxiliary tasks enhances the performance of an LSTM-based dependency parsing model and leads to better results compared to an XLM-R-based model with significantly less computational and time complexity. As the first study that focuses on multiple code-switching language pairs for dependency parsing, we acquire state-of-the-art scores on all of the studied languages. Our best models outperform the previous work by 7.4 LAS points on average.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ozates-etal-2022-improving">
<titleInfo>
<title>Improving Code-Switching Dependency Parsing with Semi-Supervised Auxiliary Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Şaziye</namePart>
<namePart type="given">Betül</namePart>
<namePart type="family">Özateş</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arzucan</namePart>
<namePart type="family">Özgür</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tunga</namePart>
<namePart type="family">Gungor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Özlem</namePart>
<namePart type="family">Çetinoğlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code-switching dependency parsing stands as a challenging task due to both the scarcity of necessary resources and the structural difficulties embedded in code-switched languages. In this study, we introduce novel sequence labeling models to be used as auxiliary tasks for dependency parsing of code-switched text in a semi-supervised scheme. We show that using auxiliary tasks enhances the performance of an LSTM-based dependency parsing model and leads to better results compared to an XLM-R-based model with significantly less computational and time complexity. As the first study that focuses on multiple code-switching language pairs for dependency parsing, we acquire state-of-the-art scores on all of the studied languages. Our best models outperform the previous work by 7.4 LAS points on average.</abstract>
<identifier type="citekey">ozates-etal-2022-improving</identifier>
<identifier type="doi">10.18653/v1/2022.findings-naacl.87</identifier>
<location>
<url>https://aclanthology.org/2022.findings-naacl.87</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1159</start>
<end>1171</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Code-Switching Dependency Parsing with Semi-Supervised Auxiliary Tasks
%A Özateş, Şaziye Betül
%A Özgür, Arzucan
%A Gungor, Tunga
%A Çetinoğlu, Özlem
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Findings of the Association for Computational Linguistics: NAACL 2022
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F ozates-etal-2022-improving
%X Code-switching dependency parsing stands as a challenging task due to both the scarcity of necessary resources and the structural difficulties embedded in code-switched languages. In this study, we introduce novel sequence labeling models to be used as auxiliary tasks for dependency parsing of code-switched text in a semi-supervised scheme. We show that using auxiliary tasks enhances the performance of an LSTM-based dependency parsing model and leads to better results compared to an XLM-R-based model with significantly less computational and time complexity. As the first study that focuses on multiple code-switching language pairs for dependency parsing, we acquire state-of-the-art scores on all of the studied languages. Our best models outperform the previous work by 7.4 LAS points on average.
%R 10.18653/v1/2022.findings-naacl.87
%U https://aclanthology.org/2022.findings-naacl.87
%U https://doi.org/10.18653/v1/2022.findings-naacl.87
%P 1159-1171
Markdown (Informal)
[Improving Code-Switching Dependency Parsing with Semi-Supervised Auxiliary Tasks](https://aclanthology.org/2022.findings-naacl.87) (Özateş et al., Findings 2022)
ACL