@inproceedings{cassotti-etal-2022-swapuniba,
title = "swap{UNIBA}@{F}in{TOC}2022: Fine-tuning Pre-trained Document Image Analysis Model for Title Detection on the Financial Domain",
author = "Cassotti, Pierluigi and
Musto, Cataldo and
DeGemmis, Marco and
Lekkas, Georgios and
Semeraro, Giovanni",
editor = "El-Haj, Mahmoud and
Rayson, Paul and
Zmandar, Nadhem",
booktitle = "Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.fnp-1.14",
pages = "95--99",
abstract = "In this paper, we introduce the results of our submitted system to the FinTOC 2022 task. We address the task using a two-stage process: first, we detect titles using Document Image Analysis, then we train a supervised model for the hierarchical level prediction. We perform Document Image Analysis using a pre-trained Faster R-CNN on the PublyaNet dataset. We fine-tuned the model on the FinTOC 2022 training set. We extract orthographic and layout features from detected titles and use them to train a Random Forest model to predict the title level. The proposed system ranked {\#}1 on both Title Detection and the Table of Content extraction tasks for Spanish. The system ranked {\#}3 on both the two subtasks for English and French.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cassotti-etal-2022-swapuniba">
<titleInfo>
<title>swapUNIBA@FinTOC2022: Fine-tuning Pre-trained Document Image Analysis Model for Title Detection on the Financial Domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pierluigi</namePart>
<namePart type="family">Cassotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cataldo</namePart>
<namePart type="family">Musto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">DeGemmis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Lekkas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Semeraro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Rayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadhem</namePart>
<namePart type="family">Zmandar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce the results of our submitted system to the FinTOC 2022 task. We address the task using a two-stage process: first, we detect titles using Document Image Analysis, then we train a supervised model for the hierarchical level prediction. We perform Document Image Analysis using a pre-trained Faster R-CNN on the PublyaNet dataset. We fine-tuned the model on the FinTOC 2022 training set. We extract orthographic and layout features from detected titles and use them to train a Random Forest model to predict the title level. The proposed system ranked #1 on both Title Detection and the Table of Content extraction tasks for Spanish. The system ranked #3 on both the two subtasks for English and French.</abstract>
<identifier type="citekey">cassotti-etal-2022-swapuniba</identifier>
<location>
<url>https://aclanthology.org/2022.fnp-1.14</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>95</start>
<end>99</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T swapUNIBA@FinTOC2022: Fine-tuning Pre-trained Document Image Analysis Model for Title Detection on the Financial Domain
%A Cassotti, Pierluigi
%A Musto, Cataldo
%A DeGemmis, Marco
%A Lekkas, Georgios
%A Semeraro, Giovanni
%Y El-Haj, Mahmoud
%Y Rayson, Paul
%Y Zmandar, Nadhem
%S Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F cassotti-etal-2022-swapuniba
%X In this paper, we introduce the results of our submitted system to the FinTOC 2022 task. We address the task using a two-stage process: first, we detect titles using Document Image Analysis, then we train a supervised model for the hierarchical level prediction. We perform Document Image Analysis using a pre-trained Faster R-CNN on the PublyaNet dataset. We fine-tuned the model on the FinTOC 2022 training set. We extract orthographic and layout features from detected titles and use them to train a Random Forest model to predict the title level. The proposed system ranked #1 on both Title Detection and the Table of Content extraction tasks for Spanish. The system ranked #3 on both the two subtasks for English and French.
%U https://aclanthology.org/2022.fnp-1.14
%P 95-99
Markdown (Informal)
[swapUNIBA@FinTOC2022: Fine-tuning Pre-trained Document Image Analysis Model for Title Detection on the Financial Domain](https://aclanthology.org/2022.fnp-1.14) (Cassotti et al., FNP 2022)
ACL