@inproceedings{bhatnagar-etal-2022-hierarchical,
title = "Hierarchical Multi-task learning framework for Isometric-Speech Language Translation",
author = "Bhatnagar, Aakash and
Bhavsar, Nidhir and
Singh, Muskaan and
Motlicek, Petr",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Costa-juss{\`a}, Marta",
booktitle = "Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)",
month = may,
year = "2022",
address = "Dublin, Ireland (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.iwslt-1.35",
doi = "10.18653/v1/2022.iwslt-1.35",
pages = "379--385",
abstract = "This paper presents our submission for the shared task on isometric neural machine translation in International Conference on Spoken Language Translation (IWSLT). There are numerous state-of-art models for translation problems. However, these models lack any length constraint to produce short or long outputs from the source text. In this paper, we propose a hierarchical approach to generate isometric translation on MUST-C dataset, we achieve a BERTscore of 0.85, a length ratio of 1.087, a BLEU score of 42.3, and a length range of 51.03{\%}. On the blind dataset provided by the task organizers, we obtain a BERTscore of 0.80, a length ratio of 1.10 and a length range of 47.5{\%}. We have made our code public here \url{https://github.com/aakash0017/Machine-Translation-ISWLT}",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhatnagar-etal-2022-hierarchical">
<titleInfo>
<title>Hierarchical Multi-task learning framework for Isometric-Speech Language Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aakash</namePart>
<namePart type="family">Bhatnagar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nidhir</namePart>
<namePart type="family">Bhavsar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muskaan</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petr</namePart>
<namePart type="family">Motlicek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our submission for the shared task on isometric neural machine translation in International Conference on Spoken Language Translation (IWSLT). There are numerous state-of-art models for translation problems. However, these models lack any length constraint to produce short or long outputs from the source text. In this paper, we propose a hierarchical approach to generate isometric translation on MUST-C dataset, we achieve a BERTscore of 0.85, a length ratio of 1.087, a BLEU score of 42.3, and a length range of 51.03%. On the blind dataset provided by the task organizers, we obtain a BERTscore of 0.80, a length ratio of 1.10 and a length range of 47.5%. We have made our code public here https://github.com/aakash0017/Machine-Translation-ISWLT</abstract>
<identifier type="citekey">bhatnagar-etal-2022-hierarchical</identifier>
<identifier type="doi">10.18653/v1/2022.iwslt-1.35</identifier>
<location>
<url>https://aclanthology.org/2022.iwslt-1.35</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>379</start>
<end>385</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hierarchical Multi-task learning framework for Isometric-Speech Language Translation
%A Bhatnagar, Aakash
%A Bhavsar, Nidhir
%A Singh, Muskaan
%A Motlicek, Petr
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Costa-jussà, Marta
%S Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland (in-person and online)
%F bhatnagar-etal-2022-hierarchical
%X This paper presents our submission for the shared task on isometric neural machine translation in International Conference on Spoken Language Translation (IWSLT). There are numerous state-of-art models for translation problems. However, these models lack any length constraint to produce short or long outputs from the source text. In this paper, we propose a hierarchical approach to generate isometric translation on MUST-C dataset, we achieve a BERTscore of 0.85, a length ratio of 1.087, a BLEU score of 42.3, and a length range of 51.03%. On the blind dataset provided by the task organizers, we obtain a BERTscore of 0.80, a length ratio of 1.10 and a length range of 47.5%. We have made our code public here https://github.com/aakash0017/Machine-Translation-ISWLT
%R 10.18653/v1/2022.iwslt-1.35
%U https://aclanthology.org/2022.iwslt-1.35
%U https://doi.org/10.18653/v1/2022.iwslt-1.35
%P 379-385
Markdown (Informal)
[Hierarchical Multi-task learning framework for Isometric-Speech Language Translation](https://aclanthology.org/2022.iwslt-1.35) (Bhatnagar et al., IWSLT 2022)
ACL