@inproceedings{liu-etal-2023-deakinnlp,
title = "{D}eakin{NLP} at {P}rob{S}um 2023: Clinical Progress Note Summarization with Rules and Language {M}odels{C}linical Progress Note Summarization with Rules and Languague Models",
author = "Liu, Ming and
Zhang, Dan and
Tan, Weicong and
Zhang, He",
editor = "Demner-fushman, Dina and
Ananiadou, Sophia and
Cohen, Kevin",
booktitle = "The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.bionlp-1.47",
doi = "10.18653/v1/2023.bionlp-1.47",
pages = "491--496",
abstract = "This paper summarizes two approaches developed for BioNLP2023 workshop task 1A: clinical problem list summarization. We develop two types of methods with either rules or pre-trained language models. In the rule-based summarization model, we leverage UMLS (Unified Medical Language System) and a negation detector to extract text spans to represent the summary. We also fine tune three pre-trained language models (BART, T5 and GPT2) to generate the summaries. Experiment results show the rule based system returns extractive summaries but lower ROUGE-L score (0.043), while the fine tuned T5 returns a higher ROUGE-L score (0.208).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2023-deakinnlp">
<titleInfo>
<title>DeakinNLP at ProbSum 2023: Clinical Progress Note Summarization with Rules and Language ModelsClinical Progress Note Summarization with Rules and Languague Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weicong</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper summarizes two approaches developed for BioNLP2023 workshop task 1A: clinical problem list summarization. We develop two types of methods with either rules or pre-trained language models. In the rule-based summarization model, we leverage UMLS (Unified Medical Language System) and a negation detector to extract text spans to represent the summary. We also fine tune three pre-trained language models (BART, T5 and GPT2) to generate the summaries. Experiment results show the rule based system returns extractive summaries but lower ROUGE-L score (0.043), while the fine tuned T5 returns a higher ROUGE-L score (0.208).</abstract>
<identifier type="citekey">liu-etal-2023-deakinnlp</identifier>
<identifier type="doi">10.18653/v1/2023.bionlp-1.47</identifier>
<location>
<url>https://aclanthology.org/2023.bionlp-1.47</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>491</start>
<end>496</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DeakinNLP at ProbSum 2023: Clinical Progress Note Summarization with Rules and Language ModelsClinical Progress Note Summarization with Rules and Languague Models
%A Liu, Ming
%A Zhang, Dan
%A Tan, Weicong
%A Zhang, He
%Y Demner-fushman, Dina
%Y Ananiadou, Sophia
%Y Cohen, Kevin
%S The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F liu-etal-2023-deakinnlp
%X This paper summarizes two approaches developed for BioNLP2023 workshop task 1A: clinical problem list summarization. We develop two types of methods with either rules or pre-trained language models. In the rule-based summarization model, we leverage UMLS (Unified Medical Language System) and a negation detector to extract text spans to represent the summary. We also fine tune three pre-trained language models (BART, T5 and GPT2) to generate the summaries. Experiment results show the rule based system returns extractive summaries but lower ROUGE-L score (0.043), while the fine tuned T5 returns a higher ROUGE-L score (0.208).
%R 10.18653/v1/2023.bionlp-1.47
%U https://aclanthology.org/2023.bionlp-1.47
%U https://doi.org/10.18653/v1/2023.bionlp-1.47
%P 491-496
Markdown (Informal)
[DeakinNLP at ProbSum 2023: Clinical Progress Note Summarization with Rules and Language ModelsClinical Progress Note Summarization with Rules and Languague Models](https://aclanthology.org/2023.bionlp-1.47) (Liu et al., BioNLP 2023)
ACL