@inproceedings{habernal-etal-2023-privacy,
title = "Privacy-Preserving Natural Language Processing",
author = "Habernal, Ivan and
Mireshghallah, Fatemehsadat and
Thaine, Patricia and
Ghanavati, Sepideh and
Feyisetan, Oluwaseyi",
editor = "Zanzotto, Fabio Massimo and
Pradhan, Sameer",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-tutorials.6",
doi = "10.18653/v1/2023.eacl-tutorials.6",
pages = "27--30",
abstract = "This cutting-edge tutorial will help the NLP community to get familiar with current research in privacy-preserving methods. We will cover topics as diverse as membership inference, differential privacy, homomorphic encryption, or federated learning, all with typical applications to NLP. The goal is not only to draw the interest of the broader community, but also to present some typical use-cases and potential pitfalls in applying privacy-preserving methods to human language technologies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="habernal-etal-2023-privacy">
<titleInfo>
<title>Privacy-Preserving Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Habernal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fatemehsadat</namePart>
<namePart type="family">Mireshghallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Thaine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sepideh</namePart>
<namePart type="family">Ghanavati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oluwaseyi</namePart>
<namePart type="family">Feyisetan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="given">Massimo</namePart>
<namePart type="family">Zanzotto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sameer</namePart>
<namePart type="family">Pradhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This cutting-edge tutorial will help the NLP community to get familiar with current research in privacy-preserving methods. We will cover topics as diverse as membership inference, differential privacy, homomorphic encryption, or federated learning, all with typical applications to NLP. The goal is not only to draw the interest of the broader community, but also to present some typical use-cases and potential pitfalls in applying privacy-preserving methods to human language technologies.</abstract>
<identifier type="citekey">habernal-etal-2023-privacy</identifier>
<identifier type="doi">10.18653/v1/2023.eacl-tutorials.6</identifier>
<location>
<url>https://aclanthology.org/2023.eacl-tutorials.6</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>27</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Privacy-Preserving Natural Language Processing
%A Habernal, Ivan
%A Mireshghallah, Fatemehsadat
%A Thaine, Patricia
%A Ghanavati, Sepideh
%A Feyisetan, Oluwaseyi
%Y Zanzotto, Fabio Massimo
%Y Pradhan, Sameer
%S Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F habernal-etal-2023-privacy
%X This cutting-edge tutorial will help the NLP community to get familiar with current research in privacy-preserving methods. We will cover topics as diverse as membership inference, differential privacy, homomorphic encryption, or federated learning, all with typical applications to NLP. The goal is not only to draw the interest of the broader community, but also to present some typical use-cases and potential pitfalls in applying privacy-preserving methods to human language technologies.
%R 10.18653/v1/2023.eacl-tutorials.6
%U https://aclanthology.org/2023.eacl-tutorials.6
%U https://doi.org/10.18653/v1/2023.eacl-tutorials.6
%P 27-30
Markdown (Informal)
[Privacy-Preserving Natural Language Processing](https://aclanthology.org/2023.eacl-tutorials.6) (Habernal et al., EACL 2023)
ACL
- Ivan Habernal, Fatemehsadat Mireshghallah, Patricia Thaine, Sepideh Ghanavati, and Oluwaseyi Feyisetan. 2023. Privacy-Preserving Natural Language Processing. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts, pages 27–30, Dubrovnik, Croatia. Association for Computational Linguistics.