@inproceedings{goel-etal-2023-semi,
title = "Semi-supervised multimodal coreference resolution in image narrations",
author = "Goel, Arushi and
Fernando, Basura and
Keller, Frank and
Bilen, Hakan",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.682",
doi = "10.18653/v1/2023.emnlp-main.682",
pages = "11067--11081",
abstract = "In this paper, we study multimodal coreference resolution, specifically where a longer descriptive text, i.e., a narration is paired with an image. This poses significant challenges due to fine-grained image-text alignment, inherent ambiguity present in narrative language, and unavailability of large annotated training sets. To tackle these challenges, we present a data efficient semi-supervised approach that utilizes image-narration pairs to resolve coreferences and narrative grounding in a multimodal context. Our approach incorporates losses for both labeled and unlabeled data within a cross-modal framework. Our evaluation shows that the proposed approach outperforms strong baselines both quantitatively and qualitatively, for the tasks of coreference resolution and narrative grounding.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="goel-etal-2023-semi">
<titleInfo>
<title>Semi-supervised multimodal coreference resolution in image narrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arushi</namePart>
<namePart type="family">Goel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Basura</namePart>
<namePart type="family">Fernando</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Keller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hakan</namePart>
<namePart type="family">Bilen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we study multimodal coreference resolution, specifically where a longer descriptive text, i.e., a narration is paired with an image. This poses significant challenges due to fine-grained image-text alignment, inherent ambiguity present in narrative language, and unavailability of large annotated training sets. To tackle these challenges, we present a data efficient semi-supervised approach that utilizes image-narration pairs to resolve coreferences and narrative grounding in a multimodal context. Our approach incorporates losses for both labeled and unlabeled data within a cross-modal framework. Our evaluation shows that the proposed approach outperforms strong baselines both quantitatively and qualitatively, for the tasks of coreference resolution and narrative grounding.</abstract>
<identifier type="citekey">goel-etal-2023-semi</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.682</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.682</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>11067</start>
<end>11081</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-supervised multimodal coreference resolution in image narrations
%A Goel, Arushi
%A Fernando, Basura
%A Keller, Frank
%A Bilen, Hakan
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F goel-etal-2023-semi
%X In this paper, we study multimodal coreference resolution, specifically where a longer descriptive text, i.e., a narration is paired with an image. This poses significant challenges due to fine-grained image-text alignment, inherent ambiguity present in narrative language, and unavailability of large annotated training sets. To tackle these challenges, we present a data efficient semi-supervised approach that utilizes image-narration pairs to resolve coreferences and narrative grounding in a multimodal context. Our approach incorporates losses for both labeled and unlabeled data within a cross-modal framework. Our evaluation shows that the proposed approach outperforms strong baselines both quantitatively and qualitatively, for the tasks of coreference resolution and narrative grounding.
%R 10.18653/v1/2023.emnlp-main.682
%U https://aclanthology.org/2023.emnlp-main.682
%U https://doi.org/10.18653/v1/2023.emnlp-main.682
%P 11067-11081
Markdown (Informal)
[Semi-supervised multimodal coreference resolution in image narrations](https://aclanthology.org/2023.emnlp-main.682) (Goel et al., EMNLP 2023)
ACL