@inproceedings{pauli-etal-2023-anchoring,
title = "Anchoring Fine-tuning of Sentence Transformer with Semantic Label Information for Efficient Truly Few-shot Classification",
author = "Pauli, Amalie and
Derczynski, Leon and
Assent, Ira",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.692",
doi = "10.18653/v1/2023.emnlp-main.692",
pages = "11254--11264",
abstract = "Few-shot classification is a powerful technique, but training requires substantial computing power and data. We propose an efficient method with small model sizes and less training data with only 2-8 training instances per class. Our proposed method, AncSetFit, targets low data scenarios by anchoring the task and label information through sentence embeddings in fine-tuning a Sentence Transformer model. It uses contrastive learning and a triplet loss to enforce training instances of a class to be closest to its own textual semantic label information in the embedding space - and thereby learning to embed different class instances more distinct. AncSetFit obtains strong performance in data-sparse scenarios compared to existing methods across SST-5, Emotion detection, and AG News data, even with just two examples per class.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pauli-etal-2023-anchoring">
<titleInfo>
<title>Anchoring Fine-tuning of Sentence Transformer with Semantic Label Information for Efficient Truly Few-shot Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amalie</namePart>
<namePart type="family">Pauli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ira</namePart>
<namePart type="family">Assent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Few-shot classification is a powerful technique, but training requires substantial computing power and data. We propose an efficient method with small model sizes and less training data with only 2-8 training instances per class. Our proposed method, AncSetFit, targets low data scenarios by anchoring the task and label information through sentence embeddings in fine-tuning a Sentence Transformer model. It uses contrastive learning and a triplet loss to enforce training instances of a class to be closest to its own textual semantic label information in the embedding space - and thereby learning to embed different class instances more distinct. AncSetFit obtains strong performance in data-sparse scenarios compared to existing methods across SST-5, Emotion detection, and AG News data, even with just two examples per class.</abstract>
<identifier type="citekey">pauli-etal-2023-anchoring</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.692</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.692</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>11254</start>
<end>11264</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Anchoring Fine-tuning of Sentence Transformer with Semantic Label Information for Efficient Truly Few-shot Classification
%A Pauli, Amalie
%A Derczynski, Leon
%A Assent, Ira
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F pauli-etal-2023-anchoring
%X Few-shot classification is a powerful technique, but training requires substantial computing power and data. We propose an efficient method with small model sizes and less training data with only 2-8 training instances per class. Our proposed method, AncSetFit, targets low data scenarios by anchoring the task and label information through sentence embeddings in fine-tuning a Sentence Transformer model. It uses contrastive learning and a triplet loss to enforce training instances of a class to be closest to its own textual semantic label information in the embedding space - and thereby learning to embed different class instances more distinct. AncSetFit obtains strong performance in data-sparse scenarios compared to existing methods across SST-5, Emotion detection, and AG News data, even with just two examples per class.
%R 10.18653/v1/2023.emnlp-main.692
%U https://aclanthology.org/2023.emnlp-main.692
%U https://doi.org/10.18653/v1/2023.emnlp-main.692
%P 11254-11264
Markdown (Informal)
[Anchoring Fine-tuning of Sentence Transformer with Semantic Label Information for Efficient Truly Few-shot Classification](https://aclanthology.org/2023.emnlp-main.692) (Pauli et al., EMNLP 2023)
ACL