@inproceedings{yue-etal-2023-interventional,
title = "Interventional Rationalization",
author = "Yue, Linan and
Liu, Qi and
Wang, Li and
An, Yanqing and
Du, Yichao and
Huang, Zhenya",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.700",
doi = "10.18653/v1/2023.emnlp-main.700",
pages = "11404--11418",
abstract = "Selective rationalizations improve the explainability of neural networks by selecting a subsequence of the input (i.e., rationales) to explain the prediction results. Although existing methods have achieved promising results, they still suffer from adopting the spurious correlations in data (aka., shortcuts) to compose rationales and make predictions. Inspired by the causal theory, in this paper, we develop an interventional rationalization (Inter-RAT) to discover the causal rationales. Specifically, we first analyse the causalities among the input, rationales and results with a structural causal model. Then, we discover spurious correlations between the input and rationales, and between rationales and results, respectively, by identifying the confounder in the causalities. Next, based on the backdoor adjustment, we propose a causal intervention method to remove the spurious correlations between input and rationales. Further, we discuss reasons why spurious correlations between the selected rationales and results exist by analysing the limitations of the sparsity constraint in the rationalization, and employ the causal intervention method to remove these correlations. Extensive experimental results on three real-world datasets clearly validate the effectiveness of our proposed method. The source code of Inter-RAT is available at https://github.com/yuelinan/Codes-of-Inter-RAT.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yue-etal-2023-interventional">
<titleInfo>
<title>Interventional Rationalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linan</namePart>
<namePart type="family">Yue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanqing</namePart>
<namePart type="family">An</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenya</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Selective rationalizations improve the explainability of neural networks by selecting a subsequence of the input (i.e., rationales) to explain the prediction results. Although existing methods have achieved promising results, they still suffer from adopting the spurious correlations in data (aka., shortcuts) to compose rationales and make predictions. Inspired by the causal theory, in this paper, we develop an interventional rationalization (Inter-RAT) to discover the causal rationales. Specifically, we first analyse the causalities among the input, rationales and results with a structural causal model. Then, we discover spurious correlations between the input and rationales, and between rationales and results, respectively, by identifying the confounder in the causalities. Next, based on the backdoor adjustment, we propose a causal intervention method to remove the spurious correlations between input and rationales. Further, we discuss reasons why spurious correlations between the selected rationales and results exist by analysing the limitations of the sparsity constraint in the rationalization, and employ the causal intervention method to remove these correlations. Extensive experimental results on three real-world datasets clearly validate the effectiveness of our proposed method. The source code of Inter-RAT is available at https://github.com/yuelinan/Codes-of-Inter-RAT.</abstract>
<identifier type="citekey">yue-etal-2023-interventional</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.700</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.700</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>11404</start>
<end>11418</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interventional Rationalization
%A Yue, Linan
%A Liu, Qi
%A Wang, Li
%A An, Yanqing
%A Du, Yichao
%A Huang, Zhenya
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F yue-etal-2023-interventional
%X Selective rationalizations improve the explainability of neural networks by selecting a subsequence of the input (i.e., rationales) to explain the prediction results. Although existing methods have achieved promising results, they still suffer from adopting the spurious correlations in data (aka., shortcuts) to compose rationales and make predictions. Inspired by the causal theory, in this paper, we develop an interventional rationalization (Inter-RAT) to discover the causal rationales. Specifically, we first analyse the causalities among the input, rationales and results with a structural causal model. Then, we discover spurious correlations between the input and rationales, and between rationales and results, respectively, by identifying the confounder in the causalities. Next, based on the backdoor adjustment, we propose a causal intervention method to remove the spurious correlations between input and rationales. Further, we discuss reasons why spurious correlations between the selected rationales and results exist by analysing the limitations of the sparsity constraint in the rationalization, and employ the causal intervention method to remove these correlations. Extensive experimental results on three real-world datasets clearly validate the effectiveness of our proposed method. The source code of Inter-RAT is available at https://github.com/yuelinan/Codes-of-Inter-RAT.
%R 10.18653/v1/2023.emnlp-main.700
%U https://aclanthology.org/2023.emnlp-main.700
%U https://doi.org/10.18653/v1/2023.emnlp-main.700
%P 11404-11418
Markdown (Informal)
[Interventional Rationalization](https://aclanthology.org/2023.emnlp-main.700) (Yue et al., EMNLP 2023)
ACL
- Linan Yue, Qi Liu, Li Wang, Yanqing An, Yichao Du, and Zhenya Huang. 2023. Interventional Rationalization. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 11404–11418, Singapore. Association for Computational Linguistics.