@inproceedings{kambhatla-etal-2023-learning,
title = "Learning Nearest Neighbour Informed Latent Word Embeddings to Improve Zero-Shot Machine Translation",
author = "Kambhatla, Nishant and
Born, Logan and
Sarkar, Anoop",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Carpuat, Marine",
booktitle = "Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.iwslt-1.27",
doi = "10.18653/v1/2023.iwslt-1.27",
pages = "291--301",
abstract = "Multilingual neural translation models exploit cross-lingual transfer to perform zero-shot translation between unseen language pairs. Past efforts to improve cross-lingual transfer have focused on aligning contextual sentence-level representations. This paper introduces three novel contributions to allow exploiting nearest neighbours at the token level during training, including: (i) an efficient, gradient-friendly way to share representations between neighboring tokens; (ii) an attentional semantic layer which extracts latent features from shared embeddings; and (iii) an agreement loss to harmonize predictions across different sentence representations. Experiments on two multilingual datasets demonstrate consistent gains in zero shot translation over strong baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kambhatla-etal-2023-learning">
<titleInfo>
<title>Learning Nearest Neighbour Informed Latent Word Embeddings to Improve Zero-Shot Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nishant</namePart>
<namePart type="family">Kambhatla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Logan</namePart>
<namePart type="family">Born</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multilingual neural translation models exploit cross-lingual transfer to perform zero-shot translation between unseen language pairs. Past efforts to improve cross-lingual transfer have focused on aligning contextual sentence-level representations. This paper introduces three novel contributions to allow exploiting nearest neighbours at the token level during training, including: (i) an efficient, gradient-friendly way to share representations between neighboring tokens; (ii) an attentional semantic layer which extracts latent features from shared embeddings; and (iii) an agreement loss to harmonize predictions across different sentence representations. Experiments on two multilingual datasets demonstrate consistent gains in zero shot translation over strong baselines.</abstract>
<identifier type="citekey">kambhatla-etal-2023-learning</identifier>
<identifier type="doi">10.18653/v1/2023.iwslt-1.27</identifier>
<location>
<url>https://aclanthology.org/2023.iwslt-1.27</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>291</start>
<end>301</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Nearest Neighbour Informed Latent Word Embeddings to Improve Zero-Shot Machine Translation
%A Kambhatla, Nishant
%A Born, Logan
%A Sarkar, Anoop
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Carpuat, Marine
%S Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada (in-person and online)
%F kambhatla-etal-2023-learning
%X Multilingual neural translation models exploit cross-lingual transfer to perform zero-shot translation between unseen language pairs. Past efforts to improve cross-lingual transfer have focused on aligning contextual sentence-level representations. This paper introduces three novel contributions to allow exploiting nearest neighbours at the token level during training, including: (i) an efficient, gradient-friendly way to share representations between neighboring tokens; (ii) an attentional semantic layer which extracts latent features from shared embeddings; and (iii) an agreement loss to harmonize predictions across different sentence representations. Experiments on two multilingual datasets demonstrate consistent gains in zero shot translation over strong baselines.
%R 10.18653/v1/2023.iwslt-1.27
%U https://aclanthology.org/2023.iwslt-1.27
%U https://doi.org/10.18653/v1/2023.iwslt-1.27
%P 291-301
Markdown (Informal)
[Learning Nearest Neighbour Informed Latent Word Embeddings to Improve Zero-Shot Machine Translation](https://aclanthology.org/2023.iwslt-1.27) (Kambhatla et al., IWSLT 2023)
ACL