Impact de l’apprentissage multi-labels actif appliqué aux transformers

Maxime Arens, Charles Teissèdre, Lucile Callebert, Jose G Moreno, Mohand Boughanem


Abstract
L’Apprentissage Actif (AA) est largement utilisé en apprentissage automatique afin de réduire l’effort d’annotation. Bien que la plupart des travaux d’AA soient antérieurs aux transformers, le succès récent de ces architectures a conduit la communauté à revisiter l’AA dans le contexte des modèles de langues pré-entraînés.De plus, le mécanisme de fine-tuning, où seules quelques données annotées sont utilisées pour entraîner le modèle sur une nouvelle tâche, est parfaitement en accord avec l’objectif de l’AA. Nous proposons d’étudier l’impact de l’AA dans le contexte des transformers pour la tâche de classification multi-labels. Or la plupart des stratégies AA, lorsqu’elles sont appliquées à ces modèles, conduisent à des temps de calcul excessifs, ce qui empêche leur utilisation au cours d’une interaction homme-machine en temps réel. Afin de pallier ce problème, nous utilisons des stratégies d’AA basées sur l’incertitude. L’article compare six stratégies d’AA basées sur l’incertitude dans le contexte des transformers et montre que si deux stratégies améliorent invariablement les performances, les autres ne surpassent pas l’échantillonnage aléatoire. L’étude montre également que les stratégies performantes ont tendance à sélectionner des ensembles d’instances plus diversifiées pour l’annotation.
Anthology ID:
2023.jeptalnrecital-coria.1
Volume:
Actes de CORIA-TALN 2023. Actes de la 18e Conférence en Recherche d'Information et Applications (CORIA)
Month:
6
Year:
2023
Address:
Paris, France
Editor:
Haïfa Zargayouna
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA
Note:
Pages:
2–17
Language:
French
URL:
https://aclanthology.org/2023.jeptalnrecital-coria.1
DOI:
Bibkey:
Cite (ACL):
Maxime Arens, Charles Teissèdre, Lucile Callebert, Jose G Moreno, and Mohand Boughanem. 2023. Impact de l’apprentissage multi-labels actif appliqué aux transformers. In Actes de CORIA-TALN 2023. Actes de la 18e Conférence en Recherche d'Information et Applications (CORIA), pages 2–17, Paris, France. ATALA.
Cite (Informal):
Impact de l’apprentissage multi-labels actif appliqué aux transformers (Arens et al., JEP/TALN/RECITAL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.jeptalnrecital-coria.1.pdf