@inproceedings{mccurdy-hahn-2024-lossy,
title = "Lossy Context Surprisal Predicts Task-Dependent Patterns in Relative Clause Processing",
author = "McCurdy, Kate and
Hahn, Michael",
editor = "Barak, Libby and
Alikhani, Malihe",
booktitle = "Proceedings of the 28th Conference on Computational Natural Language Learning",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.conll-1.4",
pages = "36--45",
abstract = "English relative clauses are a critical test case for theories of syntactic processing. Expectation- and memory-based accounts make opposing predictions, and behavioral experiments have found mixed results. We present a technical extension of Lossy Context Surprisal (LCS) and use it to model relative clause processing in three behavioral experiments. LCS predicts key results at distinct retention rates, showing that task-dependent memory demands can account for discrepant behavioral patterns in the literature.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mccurdy-hahn-2024-lossy">
<titleInfo>
<title>Lossy Context Surprisal Predicts Task-Dependent Patterns in Relative Clause Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">McCurdy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Libby</namePart>
<namePart type="family">Barak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, FL, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>English relative clauses are a critical test case for theories of syntactic processing. Expectation- and memory-based accounts make opposing predictions, and behavioral experiments have found mixed results. We present a technical extension of Lossy Context Surprisal (LCS) and use it to model relative clause processing in three behavioral experiments. LCS predicts key results at distinct retention rates, showing that task-dependent memory demands can account for discrepant behavioral patterns in the literature.</abstract>
<identifier type="citekey">mccurdy-hahn-2024-lossy</identifier>
<location>
<url>https://aclanthology.org/2024.conll-1.4</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>36</start>
<end>45</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lossy Context Surprisal Predicts Task-Dependent Patterns in Relative Clause Processing
%A McCurdy, Kate
%A Hahn, Michael
%Y Barak, Libby
%Y Alikhani, Malihe
%S Proceedings of the 28th Conference on Computational Natural Language Learning
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, FL, USA
%F mccurdy-hahn-2024-lossy
%X English relative clauses are a critical test case for theories of syntactic processing. Expectation- and memory-based accounts make opposing predictions, and behavioral experiments have found mixed results. We present a technical extension of Lossy Context Surprisal (LCS) and use it to model relative clause processing in three behavioral experiments. LCS predicts key results at distinct retention rates, showing that task-dependent memory demands can account for discrepant behavioral patterns in the literature.
%U https://aclanthology.org/2024.conll-1.4
%P 36-45
Markdown (Informal)
[Lossy Context Surprisal Predicts Task-Dependent Patterns in Relative Clause Processing](https://aclanthology.org/2024.conll-1.4) (McCurdy & Hahn, CoNLL 2024)
ACL