@inproceedings{asano-etal-2024-text2traj2text-learning,
title = "{T}ext2{T}raj2{T}ext: Learning-by-Synthesis Framework for Contextual Captioning of Human Movement Trajectories",
author = "Asano, Hikaru and
Yonetani, Ryo and
Sekii, Taiki and
Ouchi, Hiroki",
editor = "Mahamood, Saad and
Minh, Nguyen Le and
Ippolito, Daphne",
booktitle = "Proceedings of the 17th International Natural Language Generation Conference",
month = sep,
year = "2024",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.inlg-main.24",
pages = "289--302",
abstract = "This paper presents Text2Traj2Text, a novel learning-by-synthesis framework for captioning possible contexts behind shopper{'}s trajectory data in retail stores. Our work will impact various retail applications that need better customer understanding, such as targeted advertising and inventory management. The key idea is leveraging large language models to synthesize a diverse and realistic collection of contextual captions as well as the corresponding movement trajectories on a store map. Despite learned from fully synthesized data, the captioning model can generalize well to trajectories/captions created by real human subjects. Our systematic evaluation confirmed the effectiveness of the proposed framework over competitive approaches in terms of ROUGE and BERT Score metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="asano-etal-2024-text2traj2text-learning">
<titleInfo>
<title>Text2Traj2Text: Learning-by-Synthesis Framework for Contextual Captioning of Human Movement Trajectories</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hikaru</namePart>
<namePart type="family">Asano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryo</namePart>
<namePart type="family">Yonetani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taiki</namePart>
<namePart type="family">Sekii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Ouchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Mahamood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Minh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daphne</namePart>
<namePart type="family">Ippolito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents Text2Traj2Text, a novel learning-by-synthesis framework for captioning possible contexts behind shopper’s trajectory data in retail stores. Our work will impact various retail applications that need better customer understanding, such as targeted advertising and inventory management. The key idea is leveraging large language models to synthesize a diverse and realistic collection of contextual captions as well as the corresponding movement trajectories on a store map. Despite learned from fully synthesized data, the captioning model can generalize well to trajectories/captions created by real human subjects. Our systematic evaluation confirmed the effectiveness of the proposed framework over competitive approaches in terms of ROUGE and BERT Score metrics.</abstract>
<identifier type="citekey">asano-etal-2024-text2traj2text-learning</identifier>
<location>
<url>https://aclanthology.org/2024.inlg-main.24</url>
</location>
<part>
<date>2024-09</date>
<extent unit="page">
<start>289</start>
<end>302</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Text2Traj2Text: Learning-by-Synthesis Framework for Contextual Captioning of Human Movement Trajectories
%A Asano, Hikaru
%A Yonetani, Ryo
%A Sekii, Taiki
%A Ouchi, Hiroki
%Y Mahamood, Saad
%Y Minh, Nguyen Le
%Y Ippolito, Daphne
%S Proceedings of the 17th International Natural Language Generation Conference
%D 2024
%8 September
%I Association for Computational Linguistics
%C Tokyo, Japan
%F asano-etal-2024-text2traj2text-learning
%X This paper presents Text2Traj2Text, a novel learning-by-synthesis framework for captioning possible contexts behind shopper’s trajectory data in retail stores. Our work will impact various retail applications that need better customer understanding, such as targeted advertising and inventory management. The key idea is leveraging large language models to synthesize a diverse and realistic collection of contextual captions as well as the corresponding movement trajectories on a store map. Despite learned from fully synthesized data, the captioning model can generalize well to trajectories/captions created by real human subjects. Our systematic evaluation confirmed the effectiveness of the proposed framework over competitive approaches in terms of ROUGE and BERT Score metrics.
%U https://aclanthology.org/2024.inlg-main.24
%P 289-302
Markdown (Informal)
[Text2Traj2Text: Learning-by-Synthesis Framework for Contextual Captioning of Human Movement Trajectories](https://aclanthology.org/2024.inlg-main.24) (Asano et al., INLG 2024)
ACL