@inproceedings{zhang-etal-2024-promptfix,
title = "{P}rompt{F}ix: Few-shot Backdoor Removal via Adversarial Prompt Tuning",
author = "Zhang, Tianrong and
Xi, Zhaohan and
Wang, Ting and
Mitra, Prasenjit and
Chen, Jinghui",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.177",
doi = "10.18653/v1/2024.naacl-long.177",
pages = "3212--3225",
abstract = "Pre-trained language models (PLMs) have attracted enormous attention over the past few years with their unparalleled performances. Meanwhile, the soaring cost to train PLMs as well as their amazing generalizability have jointly contributed to few-shot fine-tuning and prompting as the most popular training paradigms for natural language processing (NLP) models. Nevertheless, existing studies have shown that these NLP models can be backdoored such that model behavior is manipulated when trigger tokens are presented.In this paper, we propose PromptFix, a novel backdoor mitigation strategy for NLP models via adversarial prompt-tuning in few-shot settings.Unlike existing NLP backdoor removal methods, which rely on accurate trigger inversion and subsequent model fine-tuning, PromptFix keeps the model parameters intact and only utilizes two extra sets of soft tokens which approximate the trigger and counteract it respectively. The use of soft tokens and adversarial optimization eliminates the need to enumerate possible backdoor configurations and enables an adaptive balance between trigger finding and preservation of performance.Experiments with various backdoor attacks validate the effectiveness of the proposed method and the performances when domain shift is present further shows PromptFix{'}s applicability to models pretrained on unknown data source which is the common case in prompt tuning scenarios.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2024-promptfix">
<titleInfo>
<title>PromptFix: Few-shot Backdoor Removal via Adversarial Prompt Tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tianrong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaohan</namePart>
<namePart type="family">Xi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prasenjit</namePart>
<namePart type="family">Mitra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinghui</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained language models (PLMs) have attracted enormous attention over the past few years with their unparalleled performances. Meanwhile, the soaring cost to train PLMs as well as their amazing generalizability have jointly contributed to few-shot fine-tuning and prompting as the most popular training paradigms for natural language processing (NLP) models. Nevertheless, existing studies have shown that these NLP models can be backdoored such that model behavior is manipulated when trigger tokens are presented.In this paper, we propose PromptFix, a novel backdoor mitigation strategy for NLP models via adversarial prompt-tuning in few-shot settings.Unlike existing NLP backdoor removal methods, which rely on accurate trigger inversion and subsequent model fine-tuning, PromptFix keeps the model parameters intact and only utilizes two extra sets of soft tokens which approximate the trigger and counteract it respectively. The use of soft tokens and adversarial optimization eliminates the need to enumerate possible backdoor configurations and enables an adaptive balance between trigger finding and preservation of performance.Experiments with various backdoor attacks validate the effectiveness of the proposed method and the performances when domain shift is present further shows PromptFix’s applicability to models pretrained on unknown data source which is the common case in prompt tuning scenarios.</abstract>
<identifier type="citekey">zhang-etal-2024-promptfix</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.177</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.177</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>3212</start>
<end>3225</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PromptFix: Few-shot Backdoor Removal via Adversarial Prompt Tuning
%A Zhang, Tianrong
%A Xi, Zhaohan
%A Wang, Ting
%A Mitra, Prasenjit
%A Chen, Jinghui
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F zhang-etal-2024-promptfix
%X Pre-trained language models (PLMs) have attracted enormous attention over the past few years with their unparalleled performances. Meanwhile, the soaring cost to train PLMs as well as their amazing generalizability have jointly contributed to few-shot fine-tuning and prompting as the most popular training paradigms for natural language processing (NLP) models. Nevertheless, existing studies have shown that these NLP models can be backdoored such that model behavior is manipulated when trigger tokens are presented.In this paper, we propose PromptFix, a novel backdoor mitigation strategy for NLP models via adversarial prompt-tuning in few-shot settings.Unlike existing NLP backdoor removal methods, which rely on accurate trigger inversion and subsequent model fine-tuning, PromptFix keeps the model parameters intact and only utilizes two extra sets of soft tokens which approximate the trigger and counteract it respectively. The use of soft tokens and adversarial optimization eliminates the need to enumerate possible backdoor configurations and enables an adaptive balance between trigger finding and preservation of performance.Experiments with various backdoor attacks validate the effectiveness of the proposed method and the performances when domain shift is present further shows PromptFix’s applicability to models pretrained on unknown data source which is the common case in prompt tuning scenarios.
%R 10.18653/v1/2024.naacl-long.177
%U https://aclanthology.org/2024.naacl-long.177
%U https://doi.org/10.18653/v1/2024.naacl-long.177
%P 3212-3225
Markdown (Informal)
[PromptFix: Few-shot Backdoor Removal via Adversarial Prompt Tuning](https://aclanthology.org/2024.naacl-long.177) (Zhang et al., NAACL 2024)
ACL
- Tianrong Zhang, Zhaohan Xi, Ting Wang, Prasenjit Mitra, and Jinghui Chen. 2024. PromptFix: Few-shot Backdoor Removal via Adversarial Prompt Tuning. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 3212–3225, Mexico City, Mexico. Association for Computational Linguistics.