@inproceedings{nath-etal-2024-okay,
title = "Okay, Let{'}s Do This! Modeling Event Coreference with Generated Rationales and Knowledge Distillation",
author = "Nath, Abhijnan and
Manafi Avari, Shadi and
Chelle, Avyakta and
Krishnaswamy, Nikhil",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.218",
doi = "10.18653/v1/2024.naacl-long.218",
pages = "3931--3946",
abstract = "In NLP, Event Coreference Resolution (ECR) is the task of connecting event clusters that refer to the same underlying real-life event, usually via neural systems. In this work, we investigate using abductive free-text rationales (FTRs) generated by modern autoregressive LLMs as distant supervision of smaller student models for cross-document coreference (CDCR) of events. We implement novel rationale-oriented event clustering and knowledge distillation methods for event coreference scoring that leverage enriched information from the FTRs for improved CDCR without additional annotation or expensive document clustering. Our model using coreference-specific knowledge distillation achieves SOTA $B^3$ $F_1$ on the ECB+ and GVC corpora and we establish a new baseline on the AIDA Phase 1 corpus. Our code can be found at https://github.com/csu-signal/llama{\_}cdcr.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nath-etal-2024-okay">
<titleInfo>
<title>Okay, Let’s Do This! Modeling Event Coreference with Generated Rationales and Knowledge Distillation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhijnan</namePart>
<namePart type="family">Nath</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shadi</namePart>
<namePart type="family">Manafi Avari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avyakta</namePart>
<namePart type="family">Chelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikhil</namePart>
<namePart type="family">Krishnaswamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In NLP, Event Coreference Resolution (ECR) is the task of connecting event clusters that refer to the same underlying real-life event, usually via neural systems. In this work, we investigate using abductive free-text rationales (FTRs) generated by modern autoregressive LLMs as distant supervision of smaller student models for cross-document coreference (CDCR) of events. We implement novel rationale-oriented event clustering and knowledge distillation methods for event coreference scoring that leverage enriched information from the FTRs for improved CDCR without additional annotation or expensive document clustering. Our model using coreference-specific knowledge distillation achieves SOTA B³ F₁ on the ECB+ and GVC corpora and we establish a new baseline on the AIDA Phase 1 corpus. Our code can be found at https://github.com/csu-signal/llama_cdcr.</abstract>
<identifier type="citekey">nath-etal-2024-okay</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.218</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.218</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>3931</start>
<end>3946</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Okay, Let’s Do This! Modeling Event Coreference with Generated Rationales and Knowledge Distillation
%A Nath, Abhijnan
%A Manafi Avari, Shadi
%A Chelle, Avyakta
%A Krishnaswamy, Nikhil
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F nath-etal-2024-okay
%X In NLP, Event Coreference Resolution (ECR) is the task of connecting event clusters that refer to the same underlying real-life event, usually via neural systems. In this work, we investigate using abductive free-text rationales (FTRs) generated by modern autoregressive LLMs as distant supervision of smaller student models for cross-document coreference (CDCR) of events. We implement novel rationale-oriented event clustering and knowledge distillation methods for event coreference scoring that leverage enriched information from the FTRs for improved CDCR without additional annotation or expensive document clustering. Our model using coreference-specific knowledge distillation achieves SOTA B³ F₁ on the ECB+ and GVC corpora and we establish a new baseline on the AIDA Phase 1 corpus. Our code can be found at https://github.com/csu-signal/llama_cdcr.
%R 10.18653/v1/2024.naacl-long.218
%U https://aclanthology.org/2024.naacl-long.218
%U https://doi.org/10.18653/v1/2024.naacl-long.218
%P 3931-3946
Markdown (Informal)
[Okay, Let’s Do This! Modeling Event Coreference with Generated Rationales and Knowledge Distillation](https://aclanthology.org/2024.naacl-long.218) (Nath et al., NAACL 2024)
ACL