@inproceedings{lei-huang-2024-sentence,
title = "Sentence-level Media Bias Analysis with Event Relation Graph",
author = "Lei, Yuanyuan and
Huang, Ruihong",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.292",
doi = "10.18653/v1/2024.naacl-long.292",
pages = "5225--5238",
abstract = "Media outlets are becoming more partisan and polarized nowadays. In this paper, we identify media bias at the sentence level, and pinpoint bias sentences that intend to sway readers{'} opinions. As bias sentences are often expressed in a neutral and factual way, considering broader context outside a sentence can help reveal the bias. In particular, we observe that events in a bias sentence need to be understood in associations with other events in the document. Therefore, we propose to construct an event relation graph to explicitly reason about event-event relations for sentence-level bias identification. The designed event relation graph consists of events as nodes and four common types of event relations: coreference, temporal, causal, and subevent relations. Then, we incorporate event relation graph for bias sentences identification in two steps: an event-aware language model is built to inject the events and event relations knowledge into the basic language model via soft labels; further, a relation-aware graph attention network is designed to update sentence embedding with events and event relations information based on hard labels. Experiments on two benchmark datasets demonstrate that our approach with the aid of event relation graph improves both precision and recall of bias sentence identification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lei-huang-2024-sentence">
<titleInfo>
<title>Sentence-level Media Bias Analysis with Event Relation Graph</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuanyuan</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Media outlets are becoming more partisan and polarized nowadays. In this paper, we identify media bias at the sentence level, and pinpoint bias sentences that intend to sway readers’ opinions. As bias sentences are often expressed in a neutral and factual way, considering broader context outside a sentence can help reveal the bias. In particular, we observe that events in a bias sentence need to be understood in associations with other events in the document. Therefore, we propose to construct an event relation graph to explicitly reason about event-event relations for sentence-level bias identification. The designed event relation graph consists of events as nodes and four common types of event relations: coreference, temporal, causal, and subevent relations. Then, we incorporate event relation graph for bias sentences identification in two steps: an event-aware language model is built to inject the events and event relations knowledge into the basic language model via soft labels; further, a relation-aware graph attention network is designed to update sentence embedding with events and event relations information based on hard labels. Experiments on two benchmark datasets demonstrate that our approach with the aid of event relation graph improves both precision and recall of bias sentence identification.</abstract>
<identifier type="citekey">lei-huang-2024-sentence</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.292</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.292</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>5225</start>
<end>5238</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentence-level Media Bias Analysis with Event Relation Graph
%A Lei, Yuanyuan
%A Huang, Ruihong
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F lei-huang-2024-sentence
%X Media outlets are becoming more partisan and polarized nowadays. In this paper, we identify media bias at the sentence level, and pinpoint bias sentences that intend to sway readers’ opinions. As bias sentences are often expressed in a neutral and factual way, considering broader context outside a sentence can help reveal the bias. In particular, we observe that events in a bias sentence need to be understood in associations with other events in the document. Therefore, we propose to construct an event relation graph to explicitly reason about event-event relations for sentence-level bias identification. The designed event relation graph consists of events as nodes and four common types of event relations: coreference, temporal, causal, and subevent relations. Then, we incorporate event relation graph for bias sentences identification in two steps: an event-aware language model is built to inject the events and event relations knowledge into the basic language model via soft labels; further, a relation-aware graph attention network is designed to update sentence embedding with events and event relations information based on hard labels. Experiments on two benchmark datasets demonstrate that our approach with the aid of event relation graph improves both precision and recall of bias sentence identification.
%R 10.18653/v1/2024.naacl-long.292
%U https://aclanthology.org/2024.naacl-long.292
%U https://doi.org/10.18653/v1/2024.naacl-long.292
%P 5225-5238
Markdown (Informal)
[Sentence-level Media Bias Analysis with Event Relation Graph](https://aclanthology.org/2024.naacl-long.292) (Lei & Huang, NAACL 2024)
ACL
- Yuanyuan Lei and Ruihong Huang. 2024. Sentence-level Media Bias Analysis with Event Relation Graph. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 5225–5238, Mexico City, Mexico. Association for Computational Linguistics.