@inproceedings{li-etal-2024-integration,
title = "The Integration of Semantic and Structural Knowledge in Knowledge Graph Entity Typing",
author = "Li, Muzhi and
Hu, Minda and
King, Irwin and
Leung, Ho-fung",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.369",
doi = "10.18653/v1/2024.naacl-long.369",
pages = "6625--6638",
abstract = "The Knowledge Graph Entity Typing (KGET) task aims to predict missing type annotations for entities in knowledge graphs. Recent works only utilize the \textit{ \textbf{structural knowledge}} in the local neighborhood of entities, disregarding \textit{ \textbf{semantic knowledge}} in the textual representations of entities, relations, and types that are also crucial for type inference. Additionally, we observe that the interaction between semantic and structural knowledge can be utilized to address the false-negative problem. In this paper, we propose a novel \textbf{S}emantic and \textbf{S}tructure-aware KG \textbf{E}ntity \textbf{T}yping (SSET) framework, which is composed of three modules. First, the \textit{Semantic Knowledge Encoding} module encodes factual knowledge in the KG with a Masked Entity Typing task. Then, the \textit{Structural Knowledge Aggregation} module aggregates knowledge from the multi-hop neighborhood of entities to infer missing types. Finally, the \textit{Unsupervised Type Re-ranking} module utilizes the inference results from the two models above to generate type predictions that are robust to false-negative samples. Extensive experiments show that SSET significantly outperforms existing state-of-the-art methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2024-integration">
<titleInfo>
<title>The Integration of Semantic and Structural Knowledge in Knowledge Graph Entity Typing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Muzhi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minda</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Irwin</namePart>
<namePart type="family">King</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ho-fung</namePart>
<namePart type="family">Leung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Knowledge Graph Entity Typing (KGET) task aims to predict missing type annotations for entities in knowledge graphs. Recent works only utilize the structural knowledge in the local neighborhood of entities, disregarding semantic knowledge in the textual representations of entities, relations, and types that are also crucial for type inference. Additionally, we observe that the interaction between semantic and structural knowledge can be utilized to address the false-negative problem. In this paper, we propose a novel Semantic and Structure-aware KG Entity Typing (SSET) framework, which is composed of three modules. First, the Semantic Knowledge Encoding module encodes factual knowledge in the KG with a Masked Entity Typing task. Then, the Structural Knowledge Aggregation module aggregates knowledge from the multi-hop neighborhood of entities to infer missing types. Finally, the Unsupervised Type Re-ranking module utilizes the inference results from the two models above to generate type predictions that are robust to false-negative samples. Extensive experiments show that SSET significantly outperforms existing state-of-the-art methods.</abstract>
<identifier type="citekey">li-etal-2024-integration</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.369</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.369</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>6625</start>
<end>6638</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Integration of Semantic and Structural Knowledge in Knowledge Graph Entity Typing
%A Li, Muzhi
%A Hu, Minda
%A King, Irwin
%A Leung, Ho-fung
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F li-etal-2024-integration
%X The Knowledge Graph Entity Typing (KGET) task aims to predict missing type annotations for entities in knowledge graphs. Recent works only utilize the structural knowledge in the local neighborhood of entities, disregarding semantic knowledge in the textual representations of entities, relations, and types that are also crucial for type inference. Additionally, we observe that the interaction between semantic and structural knowledge can be utilized to address the false-negative problem. In this paper, we propose a novel Semantic and Structure-aware KG Entity Typing (SSET) framework, which is composed of three modules. First, the Semantic Knowledge Encoding module encodes factual knowledge in the KG with a Masked Entity Typing task. Then, the Structural Knowledge Aggregation module aggregates knowledge from the multi-hop neighborhood of entities to infer missing types. Finally, the Unsupervised Type Re-ranking module utilizes the inference results from the two models above to generate type predictions that are robust to false-negative samples. Extensive experiments show that SSET significantly outperforms existing state-of-the-art methods.
%R 10.18653/v1/2024.naacl-long.369
%U https://aclanthology.org/2024.naacl-long.369
%U https://doi.org/10.18653/v1/2024.naacl-long.369
%P 6625-6638
Markdown (Informal)
[The Integration of Semantic and Structural Knowledge in Knowledge Graph Entity Typing](https://aclanthology.org/2024.naacl-long.369) (Li et al., NAACL 2024)
ACL