@inproceedings{etcheverry-etal-2024-algorithm,
title = "Algorithm for Automatic Legislative Text Consolidation",
author = "Etcheverry, Matias and
Real-del-Sarte, Thibaud and
Chavallard, Pauline",
editor = "Aletras, Nikolaos and
Chalkidis, Ilias and
Barrett, Leslie and
Goan{\textcommabelow{t}}{\u{a}}, C{\u{a}}t{\u{a}}lina and
Preo{\textcommabelow{t}}iuc-Pietro, Daniel and
Spanakis, Gerasimos",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2024",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nllp-1.13",
pages = "166--175",
abstract = "This study introduces a method for automating the consolidation process in a legal context, a time-consuming task traditionally performed by legal professionals. We present a generative approach that processes legislative texts to automatically apply amendments. Our method employs light quantized generative model, finetuned with LoRA, to generate accurate and reliable amended texts. To the authors knowledge, this is the first time generative models are used on legislative text consolidation. Our dataset is publicly available on HuggingFace. Experimental results demonstrate a significant improvement in efficiency, offering faster updates to legal documents. A full automated pipeline of legislative text consolidation can be done in a few hours, with a success rate of more than 63{\%} on a difficult bill.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="etcheverry-etal-2024-algorithm">
<titleInfo>
<title>Algorithm for Automatic Legislative Text Consolidation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matias</namePart>
<namePart type="family">Etcheverry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thibaud</namePart>
<namePart type="family">Real-del-Sarte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pauline</namePart>
<namePart type="family">Chavallard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cătălina</namePart>
<namePart type="family">Goan\textcommabelowtă</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preo\textcommabelowtiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerasimos</namePart>
<namePart type="family">Spanakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, FL, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study introduces a method for automating the consolidation process in a legal context, a time-consuming task traditionally performed by legal professionals. We present a generative approach that processes legislative texts to automatically apply amendments. Our method employs light quantized generative model, finetuned with LoRA, to generate accurate and reliable amended texts. To the authors knowledge, this is the first time generative models are used on legislative text consolidation. Our dataset is publicly available on HuggingFace. Experimental results demonstrate a significant improvement in efficiency, offering faster updates to legal documents. A full automated pipeline of legislative text consolidation can be done in a few hours, with a success rate of more than 63% on a difficult bill.</abstract>
<identifier type="citekey">etcheverry-etal-2024-algorithm</identifier>
<location>
<url>https://aclanthology.org/2024.nllp-1.13</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>166</start>
<end>175</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Algorithm for Automatic Legislative Text Consolidation
%A Etcheverry, Matias
%A Real-del-Sarte, Thibaud
%A Chavallard, Pauline
%Y Aletras, Nikolaos
%Y Chalkidis, Ilias
%Y Barrett, Leslie
%Y Goan\textcommabelowtă, Cătălina
%Y Preo\textcommabelowtiuc-Pietro, Daniel
%Y Spanakis, Gerasimos
%S Proceedings of the Natural Legal Language Processing Workshop 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, FL, USA
%F etcheverry-etal-2024-algorithm
%X This study introduces a method for automating the consolidation process in a legal context, a time-consuming task traditionally performed by legal professionals. We present a generative approach that processes legislative texts to automatically apply amendments. Our method employs light quantized generative model, finetuned with LoRA, to generate accurate and reliable amended texts. To the authors knowledge, this is the first time generative models are used on legislative text consolidation. Our dataset is publicly available on HuggingFace. Experimental results demonstrate a significant improvement in efficiency, offering faster updates to legal documents. A full automated pipeline of legislative text consolidation can be done in a few hours, with a success rate of more than 63% on a difficult bill.
%U https://aclanthology.org/2024.nllp-1.13
%P 166-175
Markdown (Informal)
[Algorithm for Automatic Legislative Text Consolidation](https://aclanthology.org/2024.nllp-1.13) (Etcheverry et al., NLLP 2024)
ACL
- Matias Etcheverry, Thibaud Real-del-Sarte, and Pauline Chavallard. 2024. Algorithm for Automatic Legislative Text Consolidation. In Proceedings of the Natural Legal Language Processing Workshop 2024, pages 166–175, Miami, FL, USA. Association for Computational Linguistics.